蚂蚁金服西亭:智能金融的技术挑战与方案

以下为精彩视频整理:

目前智能技术场景应用的越来越多,比如微贷,保险,支付,风控,财富等等,对金融服务也提出了更多的挑战,比如:时间敏感,海量数据,业务多样性,系统风险性,强安全,自动化等。在图像/语音、NLP、机器学习、推理与决策等领域,应用强化学习、无监督学习、图推理、迁移学习等技术,在大规模数据的情况下,期望实现快速处理和实时对抗。

深度学习+图:系统性风险预测与监控

对于用户资金的安全,需要在用户账号、设备和商户三端来进行保障。传统的风控技术是基于规则和策略来实现。随着案例增多,加的规则也越来越多,传统的模型较难符合当前的需求。蚂蚁金服是采用树模型对于非可信交易进一步判断是否账号被盗。同时采用GBDT+DNN进一步改进盗账号模型,目前提升了10%检测率。以支付宝为例,每天可以让一千多万笔交易更快更准地通过风险检查。这对系统本身、公司成本、用户安全感的提升,都非常有利。

下面介绍图学习模型的另外一个应用案例:垃圾账户识别

业务有关的网络数据,通过Structure2vec深度网络技术(Structure2vec可以根据少量的标注数据,来判断用户是好人还是坏人)对图进行向量化表征,然后根据业务特点优化目标。在用户注册时,利用用户、设备的关联去构建图,并判断账户是否为垃圾账户。这样能对垃圾账户的注册进行防控,降低后端风险基数,稳定大盘指标,极大提高整体的账户质量。与Node2Vec和规则等技术对比,Structure2vec的提升效果较明显。

在一些垃圾邮件中,有些汉字机器不能识别(比如“银行”写成“钅艮”和“彳亍”)。为了尝试解决这个问题,可利用汉字的笔画信息,将这些字拆成单一字,再拆分成笔画,利用ID来表示这些笔画,生成N元笔画信息,进而生成中文词向量。这个方法对词语有较好的识别作用,可以一定程度上处理用户输入的恶意信息,保证内容安全。

阅读原文

你可能感兴趣的:(蚂蚁金服西亭:智能金融的技术挑战与方案)