[flow]Flink~流和批的一体化方案


阿里蒋晓伟:谈流计算和批处理引擎Blink,以及Flink和Spark的对比
http://sanwen8.cn/p/2bd8aWI.html

记者:相比Spark、Hadoop、Storm等,是什么样的场景需求让阿里搜索团队选择了Flink?

蒋晓伟:首先我们希望有个流计算和批处理的一体化处理方案。Spark和Flink都具有流和批处理能力,但是他们的做法是相反的。Spark Streaming是把流转化成一个个小的批来处理,这种方案的一个问题是我们需要的延迟越低,额外开销占的比例就会越大,这导致了Spark Streaming很难做到秒级甚至亚秒级的延迟。Flink是把批当作一种有限的流,这种做法的一个特点是在流和批共享大部分代码的同时还能够保留批处理特有的一系列的优化。因为这个原因,如果要用一套引擎来解决流和批处理,那就必须以流处理为基础,所以我们决定先选择一个优秀的流处理引擎。从功能上流处理可以分为无状态的和有状态两种。在流处理的框架里引入状态管理大大提升了系统的表达能力,让用户能够很方便地实现复杂的处理逻辑,是流处理在功能上的一个飞跃。流处理引擎对一致性的支持可以分为:best effort,at least once 和 exactly once。Exactly once的语义才能真正保证完全的一致性,Flink采用的架构比较优雅地实现了exactly once的有状态流处理。另外在保证了一致性的前提下Flink在性能上也是相当优秀的。总结一下,我们觉得在流处理方面Flink在功能,延迟,一致性和性能上综合来看是目前社区最优秀的。所以我们决定采用它来实现流和批的一体化方案。最后,还有一个很重要的原因是Flink有一个比较活跃的社区。

记者:如何看待Flink、Spark、Hadoop、Storm等技术发展和不同场景下的优势对比?比如与Spark相反,Flink把批处理化作流处理,这种方式在使用时是否有什么限制?

蒋晓伟:大数据是从批处理开始的,所以很多系统都是从批处理做起,包括Spark。在批处理上Spark有着较深的积累,是一个比较优秀的系统。随着技术的发展,很多原来只有批处理的业务都有了实时的需求,流处理将会变得越来越重要,甚至成为大数据处理的主要场景。Flink把批当作流来处理有个很重要的优点是如果我们在流中引入一个blocking的算子,我们还能接着做批处理特有的优化,这个是以流处理为基础的计算引擎的一大优势。所以我认为在架构上这种设计在批处理上是可以做到最优的,而且比传统的做法还有一些特别的优势,当然工程上的实现也很重要。


大数据引擎ApacheFlink升级为Apache顶级项目软件与服务比特网
http://soft.chinabyte.com/153/13225153.shtml

  1. 快速

Flink利用基于内存的数据流并将迭代处理算法深度集成到了系统的运行时中,这就使得系统能够以极快的速度来处理数据密集型和迭代任务。

  1. 完全兼容Hadoop

Flink支持所有的Hadoop所有的输入/输出格式和数据类型,这就使得开发者无需做任何修改就能够利用Flink运行历史遗留的MapReduce操作

Flink主要包括基于Java和Scala的用于批量和基于流数据分析的API、优化器和具有自定义内存管理功能的分布式运行时等,其主要架构如下:

[flow]Flink~流和批的一体化方案_第1张图片
Paste_Image.png

开源的大数据分析平台除了Flink外,还包括Apache推出Google Dremel的开源版本Apache Drill(2014年12月份升级成为Apache基金会的顶级项目)、来自NSA(美国国家安全局)Apache Nifi(2014年12月份贡献给Apache基金会)、来自Cloudera公司开发的实时分析系统Impala(受Google Dremel启发)、加州伯克利大学AMPLab开发的大数据分析系统Shark 、Facebook开源的分布式SQL查询引擎Presto、Hortonworks开源的实时且类SQL的即时查询系统Stinger等等。

你可能感兴趣的:([flow]Flink~流和批的一体化方案)