- 【数学建模】层次分析法(AHP)详解及其应用
烟锁池塘柳0
数学建模数学建模
层次分析法(AHP)详解及其应用引言在现实生活和工作中,我们经常面临复杂的决策问题,这些问题通常涉及多个评价准则,且各准则之间可能存在相互影响。如何在这些复杂因素中做出合理的决策?层次分析法(AnalyticHierarchyProcess,AHP)作为一种系统、灵活的多准则决策方法,为我们提供了科学的决策工具。文章目录层次分析法(AHP)详解及其应用引言什么是层次分析法?层次分析法的基本原理层次
- 【数学建模】模糊综合评价模型详解、模糊集合论简介
烟锁池塘柳0
数学建模数学建模
模糊综合评价模型详解文章目录模糊综合评价模型详解1.模糊综合评价模型概述2.模糊综合评价的基本原理2.1基本概念2.2评价步骤3.模糊综合评价的数学模型3.1数学表达3.2模糊合成运算4.模糊综合评价的应用领域5.模糊综合评价的优缺点5.1优点5.2缺点6.模糊综合评价的实现步骤7.模糊综合评价在实际项目中的应用案例8.结论参考资料1.模糊综合评价模型概述模糊综合评价法(FuzzyComprehe
- 【数学建模】灰色关联分析模型详解与应用
烟锁池塘柳0
数学建模数学建模算法
灰色关联分析模型详解与应用文章目录灰色关联分析模型详解与应用引言灰色系统理论简介灰色关联分析基本原理灰色关联分析计算步骤1.确定分析序列2.数据无量纲化处理3.计算关联系数4.计算关联度灰色关联分析应用实例实例:某企业生产效率影响因素分析灰色关联分析在各领域的应用灰色关联分析的Python实现灰色关联分析的局限性结论引言在数据分析领域,我们经常面临样本量少、信息不完全、数据不确定性高的情况。传统的
- 【数学建模】TOPSIS法简介及应用
烟锁池塘柳0
数学建模数学建模算法
文章目录TOPSIS法的基本原理TOPSIS法的基本步骤TOPSIS法的应用总结在多目标决策分析中,我们常常需要在多个选择中找到一个最优解。TOPSIS(TechniqueforOrderPreferencebySimilaritytoIdealSolution)法是一个广泛应用的决策方法,基于理想解与负理想解的距离来评估各个选项的优劣。本文将简要介绍TOPSIS法的基本原理、步骤以及其在实际决策
- 数学中的“矩”
heraldww
数学概率论人工智能机器学习
数学中的“矩”矩的数学意义,高度总结:数学上,“矩”是一组点组成的模型的特定的数量测度。在力学和统计学中都有用到“矩”。如果这些点代表“质量”,那么:零阶矩表示所有点的质量;一阶矩表示质心;二阶矩表示转动惯量。如果这些点代表“概率密度”,那么:零阶矩表示这些点的总概率(也就是1);一阶矩表示期望;二阶(中心)矩表示方差;三阶(中心)矩表示偏斜度;四阶(中心)矩表示峰度;这个数学上的概念和物理上的“
- Gmsh教程
网卡了
GmshpythonGmsh
13、在没有底层CAD模型的情况下重新擦除STL文件importgmsh#导入Gmsh库,用于几何建模和网格划分importmath#导入数学库,用于计算importos#导入操作系统库,用于处理文件路径importsys#导入系统库,用于处理命令行参数gmsh.initialize()#初始化Gmsh环境defcreateGeometryAndMesh():#清除之前的模型和数据gmsh.cle
- RSA加密算法
不会搬砖的淡水鱼
网络服务器安全
RSA加密算法:数学魔术背后的安全守护者RSA加密算法(Rivest-Shamir-Adleman)是一种广泛使用的公钥加密算法,它在信息安全领域具有重要作用。RSA是由罗纳德·李维斯特(RonRivest)、阿迪·萨莫尔(AdiShamir)和伦纳德·阿德曼(LeonardAdleman)在1977年一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。RS
- GGUF量化模型技术解析与DeepSeek-R1-Distill-Llama-8B选型指南
每天三杯咖啡
人工智能
```markdown#【完全指南】GGUF量化技术与DeepSeek-R1模型选型:从入门到部署##什么是模型量化?(小白扫盲版)###1.1量化就像"模型减肥术"-**传统模型**:每个参数用32位浮点数(好比高清无损图片)-**量化模型**:用4-8位整数存储(类似手机压缩照片)-**核心原理**:`FP32→Int8/Int4`的数学映射,保留关键特征###1.2为什么要量化?|对比项|原
- 数学领域的跨时代进化与升级:从公理化到智能化的破茧之路
夏末之花
算法
作者:夏末之花|发布时间:2025-03-16|阅读量:10万+|点赞数:5.6万引言:数学的“破茧时刻”与文明跃迁人类历史上,数学的每一次重大突破都像一次“破茧时刻”,推动文明跨越式发展。从古希腊的几何公理化到牛顿的微积分,再到20世纪的计算机理论,数学始终是科学革命的基石。而在21世纪的今天,随着量子计算、人工智能、生物信息等技术的爆发,数学正迎来新一轮的进化与升级——从纯粹的逻辑工具,演变为
- 本福特定律: 为什么银行存款、河流长度等集合的首位数字更容易出现 1 而不是 9?
go
银行存款、河流长度等数据的首位数字更容易出现1而不是9,这背后的数学原理是本福特定律(Benford'sLaw)。本福特定律的概述本福特定律(Benford'sLaw)又称首位数字定律,是一种描述自然生成数据中数字分布规律的统计学现象。该定律揭示了在多种实际数据集中,数字1-9作为首位数字出现的概率呈现特定规律性分布。数学表达式首位数字d出现的概率为:P(d)=log₁₀(1+1/d),其中d∈{
- 书籍-《控制理论的数学导论(第三版)》
机器人数学
书籍:AMathematicalIntroductiontoControlTheory作者:ShlomoEngelberg出版:WorldScientificPublishingCompany编辑:陈萍萍的公主@一点人工一点智能下载:《控制理论的数学导论(第三版)》01书籍介绍本书在数学严谨性和工程应用之间达到了完美的平衡,有助于学生全面理解控制理论的数学和工程层面。本书不仅有效运用了MATLAB
- CocoaPods 私有库创建
sanjieshenwu1987
iOS私有仓库
总结流程和pod指令,以及自己操作遇到的问题。参考文章iOS组件化-基础iOS组件化-项目组件化Swift/Objective-C-使用Cocoapods创建/管理私有库(初中级用法)Swift/Objective-C-使用Cocoapods创建/管理私有库(高级用法)文章目录参考文章创建自己的私有库1、创建私有SpecRepo2、创建组件库3、提交组件库3.1验证本地库3.2提交到git3.3将
- 书籍-《优化基础:理论、工具及应用(论文版)》
机器学习人工智能
书籍:OptimizationEssentials:Theory,Tools,andApplications作者:FaizHamid出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《优化基础:理论、工具及应用(论文版)》01书籍介绍本书探讨了运筹学和数学优化领域的最新发展和令人兴奋的挑战。它以统一且精心编排的方式呈现了以下内容:(a)现实生活中出现的新颖优化问题,并突出每
- 初识HTML中的div块元素—零基础自学网页制作
猿说前端
htmlweb开发
块元素基础属性讲解元素是个有故事的元素,这个元素很早就出现在html超文本标记语言中,它设计之初就是为了解决网页页面布局的需求。但是遗憾的是它出生后一直怀才不遇。在我还上初中的时候,智能手机还没有出现,更没有平板电脑等移动设备。上网是通过摆在桌子上的计算机来完成的。那时,大街小巷上有好多网吧。那时,马云刚刚辞去工作准备创业。那时,发送邮件的操作都会出现在计算机课程中。那时,对页面还没有现在的跨平台
- AIGC与教育行业的邂逅--其在数学领域的应用与实现
想成为高手499
AIGC
引言在数学教学中,教师往往需要大量的时间准备练习题和答案解析,而学生则需要定制化的练习来满足不同的学习需求。AIGC技术可以通过自动生成数学题目、定制化学习内容、即时反馈等方式,极大地提升数学学习的效率与质量。本文将深入探讨AIGC在数学领域的几种应用场景,并通过Python代码展示具体实现方式。1.自动生成数学题目与解析数学题目生成是AIGC在数学教学中的主要应用之一。通过生成不同难度和类型的题
- 集成学习(Ensemble Learning)基础知识1
代码骑士
#机器学习集成学习机器学习人工智能
文章目录一、集成学习1、基本概念2、回顾:误差的偏差-方差分解3、为什么集成学习有效?4、基学习器:“好而不同”5、集成学习的两个基本问题(1)如何训练出具有差异性的多个基学习器?(2)如何将多个基学习器的预测结果集成为最终的强学习器预测结果?二、自助法(Bagging)1、Bagging2、BootstrapBootstrap采样的数学性质3、Bagging:集成学习的两个基本问题(1)如何训练
- 【初学者】请介绍一下线性与非线性的区别?
lisw05
计算科学线性代数图论数学建模
李升伟整理线性与非线性是数学和科学中常用的概念,主要区别如下:1.定义线性:系统或函数满足叠加性和齐次性。叠加性指输入的和导致输出的和,齐次性指输入按比例缩放时,输出也按相同比例缩放。非线性:不满足叠加性或齐次性的系统或函数。2.数学表达线性:形式为y=ax+b,其中a和b为常数。非线性:形式多样,如y=x2、y=sin(x)、y=ex等。3.图形表现线性:图形为直线。非线性:图形为曲线,如抛物线
- 什么是hessian矩阵
红廉骑士兽
矩阵线性代数算法机器学习numpy
Hessian矩阵是一个数学概念,是用来表示函数关于其自变量的二阶偏导数的矩阵。它是一个实对称矩阵,对于多元函数来说,每一个元素是对应自变量关于该函数的二阶偏导数。Hessian矩阵在优化算法和最优化等领域有着重要的应用。
- Hessian 矩阵(海森矩阵)
Chen_Chance
矩阵算法机器学习
Hessian矩阵(海森矩阵)是一个包含二阶偏导数信息的方阵,在数学和优化中起着重要作用。对于一个多元函数,其Hessian矩阵是由其各个变量的二阶偏导数组成的矩阵。假设有一个函数f(x1,x2,…,xn)f(x_1,x_2,\dots,x_n)f(x1,x2,…,xn),其Hessian矩阵(H)的元素是:Hij=∂2f∂xi∂xjH_{ij}=\frac{\partial^2f}{\parti
- deepseek具体应用场景
ahyouxiang
人工智能
DeepSeek的具体应用场景非常广泛,涵盖了多个领域和行业。以下是基于证据的详细总结:金融领域DeepSeek在金融领域的应用表现突出,例如通过其大语言模型(如DeepSeekLLM67Bt)提供数学、逻辑推理等能力,帮助金融机构提升服务效率。此外,DeepSeek还被应用于智能安全体产品中,通过安全大模型实现个性化开发和优化。医疗领域在医疗领域,DeepSeek的技术被用于辅助诊断和患者记录管
- 【高考志愿】数学
大雨淅淅
程序人生高考
目录一、数学专业概述1.1学科特点1.2课程设置1.3学习方法1.4数学专业的分类二、就业前景三、填报建议四、注意事项五、数学专业排名一、数学专业概述1.1学科特点数学专业作为一门基础学科,具有高度的抽象性、逻辑性和精确性。它要求学生具备良好的数学基础、逻辑思维能力和解决问题的能力。因此,选择数学专业的学生需要有较强的数学兴趣和扎实的数学基础。1.2课程设置数学专业的课程设置通常包括数学分析、高等
- 五、AIGC大模型_08Agent基础知识
学不会lostfound
AI人工智能agent不同生命周期的知识用AI处理AIGC
0、概述根据知识的生命周期分类,我们通常会采取不同的方法(微调、RAG、Agent)来将知识融入到AI中0.1长生命周期知识这类知识通常具有较高的稳定性和通用性,不会因时间的推移而轻易改变。它们是知识体系中的“基石”,在较长时间内保持有效性和价值。特点:稳定性强:如数学定理、物理公式等,这些知识经过长期验证,具有高度的确定性和普适性基础性强:往往是学习和研究其他知识的基础,例如教科书中的基础知识更
- 谈高考真题的使用(数学)
weixin_34116110
python测试
2019独角兽企业重金招聘Python工程师标准>>>在高三数学复习中,大家常说“以本为本,以纲为纲,高考真题当主粮”,就是以教材内容为根本,以“考试大纲”为准绳,以高考真题的训练为主线;抓住了本,把握了纲,训练有的放矢,我们的复习就会事半功倍。高考数学试题难度相对稳定,考查形式的变化却是异彩纷呈,而变化中又有着一定的规律:全国试题与各省市试题的考试要求基本一致;题型除上海和江苏外,全国和其他各省
- 《炫动漫》杂志社炫动漫杂志社炫动漫编辑部2024年第1期目录
QQ296078736
python
理论新知探究中职班主任德育能力提升策略(1)叶荣琳基于核心素养下以问题为驱动的高中数学教学评一体化的课堂教学探究(4)鹿园园农村初中英语作业设计与批阅方式的创新使用(7)侯成英新课改背景下初中物理教学方法创新策略探究(10)李传荣“双减”背景下构建初中数学高效课堂的策略(13)陈苏婷精神医学本科生参加心理剧团体课程的教学效果研究(16)查莉珺;王语含;陈虹;屈远;胡华提质增效:《机械识图》高职复习
- Tree of Thought Prompting(思维树提示)
大数据追光猿
大模型人工智能大数据深度学习语言模型计算机视觉
TreeofThoughtPrompting(思维树提示)是一种新兴的提示工程技术,旨在通过模拟人类解决问题时的多步推理过程,提升大型语言模型(LLM)在复杂任务中的表现。与传统的线性提示方法不同,思维树提示将问题分解为多个可能的推理路径,并以树状结构探索这些路径,从而找到最优解或生成更高质量的结果。这种方法特别适用于需要多步推理的任务,例如数学问题求解、逻辑推理、规划和创造性写作等场景。它结合了
- 错排(数学层面)
想做后端的小C
数学算法人工智能算法
错排,即对于n个物品,每个物品有一个对应的位置,但是在排列时将他们全部错开放置,并计算有n个物体时,错排共有几种排列可能假设位置标号为a~z对于选定的A物体,将它放到b位置排列的第一种可能,B物体放到a位置剩下的物体排列时的总可能次数为f(n−2)f(n-2)f(n−2)排列的第二种可能,B物体放到除a、b以外的位置此时,可以把B物体当成原本应该放到a位置,但是此时要把除b位置以外的n-1个位置错
- 人工智能(AI)系统化学习路线
xiaoyu❅
python人工智能学习
一、为什么需要系统化学习AI?人工智能技术正在重塑各行各业,但许多初学者容易陷入误区:❌盲目跟风:直接学习TensorFlow/PyTorch,忽视数学与算法基础。❌纸上谈兵:只看理论不写代码,无法解决实际问题。❌方向模糊:对CV/NLP/RL等细分领域缺乏认知,难以针对性提升。正确的学习姿势:“金字塔式”分层学习(理论→算法→框架→应用→工程化),逐步构建完整的AI知识体系。二、人工智能学习路线
- 常见的数学统计模型
若木胡
数学模型
以下是常见的数学统计模型分类及简要说明,适用于数据分析、预测和推断等场景:1.参数模型(ParametricModels)假设数据服从特定分布(如正态分布),通过估计参数来描述数据规律。1.1线性回归模型数学形式:(y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_px_p+\epsilon)应用:预测连续型目标变量(如房价预测)。特点:简单、可解释性强,假
- 机器学习之KMeans算法
知舟不叙
机器学习算法kmeans
文章目录引言1.KMeans算法简介2.KMeans算法的数学原理3.KMeans算法的步骤3.1初始化簇中心3.2分配数据点3.3更新簇中心3.4停止条件4.KMeans算法的优缺点4.1优点4.2缺点5.KMeans算法的应用场景5.1图像分割5.2市场细分5.3文档聚类5.4异常检测6.Python实现KMeans算法7.总结引言KMeans算法是机器学习中最经典的无监督学习算法之一,广泛应
- 机器学习流程—数据预处理 清洗
不二人生
机器学习机器学习人工智能数据预处理
文章目录机器学习流程—数据预处理清洗定义问题数据预处理数据加载与展示重复数据处理数据类型空值处理无关特征删除数据分布删除异常值生成标签和特征数据分割机器学习流程—数据预处理清洗数据处理是将数据从给定形式转换为更可用和更理想的形式的任务,即使其更有意义、信息更丰富。使用机器学习算法、数学建模和统计知识,整个过程可以自动化。这个完整过程的输出可以是任何所需的形式,如图形、视频、图表、表格、图像等等,具
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C