ubuntu下的caffe配置

一、系统

本文是基于ubuntu 17进行的。 

二、caffe 依赖库

进入命令界面输入:

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

sudo apt-get install --no-install-recommends libboost-all-dev

sudo apt-get install openblas-dev numpy scipy matplotlib lapack-dev freetype-dev libpng-dev openblas-dev

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

安装过程中,正常情况下不会出现问题,有小的问题,欢迎来探讨。

三、拉取git

sudo apt-get install git

git clone https://github.com/BVLC/caffe.git

四、安装python依赖包

1、wget --no-check-certificate https://bootstrap.pypa.io/ez_setup.py 

python ez_setup.py --insecure

wget https://bootstrap.pypa.io/get-pip.py

python get-pip.py

2、cd root/lv/caffe/python (这里根据自己的情况来定)

执行   for req in $(cat requirements.txt); do pip install $req; done

然后等着就好啦

五、Makefile的修改

cd root/lv/caffe

cp Makefile.config.example Makefile.config 

vim Makefile.config 

Makefile.config里面有依赖库的路径,及各种编译配置,如果是没有GPU的情况下,可以参照下面的配置文件内容:

## Refer to http://caffe.berkeleyvision.org/installation.html

# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).

# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).

CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers

# USE_OPENCV := 0

# USE_LEVELDB := 0

# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)

#      You should not set this flag if you will be reading LMDBs with any

#      possibility of simultaneous read and write

# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3

# OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.

# N.B. the default for Linux is g++ and the default for OSX is clang++

# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.

CUDA_DIR := /usr/local/cuda

# On Ubuntu 14.04, if cuda tools are installed via

# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:

# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.

# For CUDA < 6.0, comment the *_50 lines for compatibility.

CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \

                -gencode arch=compute_20,code=sm_21 \

                -gencode arch=compute_30,code=sm_30 \

                -gencode arch=compute_35,code=sm_35 \

                -gencode arch=compute_50,code=sm_50 \

                -gencode arch=compute_50,code=compute_50

# BLAS choice:

# atlas for ATLAS (default)

# mkl for MKL

# open for OpenBlas

#BLAS := atlas

BLAS := open

# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.

# Leave commented to accept the defaults for your choice of BLAS

# (which should work)!

# BLAS_INCLUDE := /path/to/your/blas

# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path

# BLAS_INCLUDE := $(shell brew --prefix openblas)/include

# BLAS_LIB := $(shell brew --prefix openblas)/lib

BLAS_INCLUDE := /usr/include/openblas

# This is required only if you will compile the matlab interface.

# MATLAB directory should contain the mex binary in /bin.

# MATLAB_DIR := /usr/local

# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.

# We need to be able to find Python.h and numpy/arrayobject.h.

PYTHON_INCLUDE := /usr/include/python2.7 \

                /usr/lib/python2.7/dist-packages/numpy/core/include

# Anaconda Python distribution is quite popular. Include path:

# Verify anaconda location, sometimes it's in root.

# ANACONDA_HOME := $(HOME)/anaconda

# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \

                # $(ANACONDA_HOME)/include/python2.7 \

                # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \

# We need to be able to find libpythonX.X.so or .dylib.

PYTHON_LIB := /usr/lib

# PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)

# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include

# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)

WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include

LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies

# INCLUDE_DIRS += $(shell brew --prefix)/include

# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.

# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)

# USE_PKG_CONFIG := 1

BUILD_DIR := build

DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171

# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.

TEST_GPUID := 0

# enable pretty build (comment to see full commands)

Q ?= @

六、编译caffe

make -j4 

测试一下编译结果 

make test 

make runtest

七、编译pycaffe

make pycaffe -j4

到此就搞定啦,centos也和这个过程类似呢。

你可能感兴趣的:(ubuntu下的caffe配置)