- 十大机器学习算法-梯度提升决策树(GBDT)
zjwreal
机器学习GBDT机器学习梯度提升提升树梯度提升决策树
简介梯度提升决策树(GBDT)由于准确率高、训练快速等优点,被广泛应用到分类、回归合排序问题中。该算法是一种additive树模型,每棵树学习之前additive树模型的残差。许多研究者相继提出XGBoost、LightGBM等,又进一步提升了GBDT的性能。基本思想提升树-BoostingTree以决策树为基函数的提升方法称为提升树,其决策树可以是分类树或者回归树。决策树模型可以表示为决策树的加
- CART算法
ziworeborn
CART算法就是分类回归树,它只支持二叉树,既可以作分类树,又可以作回归树。那什么是分类树,什么是回归树呢?假如有个数据集,分别给出了,不同年龄、职业、性别的不同学习时间。如果我构造了一棵决策树,想要基于数据判断这个人的职业身份,这个就属于分类树,因为是从几个分类中来做选择。如果是给定了数据,想要预测这个人的年龄,那就属于回归树。分类树可以处理离散数据,也就是数据种类有限的数据,它输出的是样本的类
- 遥感之机器学习树集成模型-CART算法之回归
遥感-GIS
遥感之机器学习树集成模型机器学习图像处理arcgis
本文在前面文章的基础上,连续介绍CART树在回归中的应用,其回归技术经常用于定量遥感领域,涉及各种地表参数含量的反演。主要分为如下几部分:回归概念描述回归树中数据集的划分准则CART回归树的原理和流程CART回归树的核心代码前面内容可参考:遥感之机器学习树模型专栏1回归概念机器学习中的回归建模以及相应的回归算法,在遥感领域对应的就是定量遥感分方向,比如水质参数反演,土壤中各种参数反演,森林各种生物
- 每天一个数据分析题(四百九十六)- 决策树模型
跟着紫枫学姐学CDA
数据分析题库数据分析决策树数据挖掘
回归树是可以用于回归的决策树模型,一个回归树对应着输入空间(即特征空间)的一个划分以及在划分单元上的输出值。以下哪个指标可用于回归树中的模型比较A.AdjustedR2B.F-measureC.AUCD.Precision&Recall数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器
- (十六)梯度提升树--回归和分类的算法(gbdt))
羽天驿
一、GBDT算法中有两个值,一个预测值,一个真实值,梯度提升树,减小残差,使梯度减小。梯度提升回归树,裂分条件是:MSE均方误差是真实值,预测值梯度提升回归树,划分指标mse算法示例mse.pngfor循环,计算所有的裂分方式的mse,找变化最大的,作为裂分条件!!!为什么变化最大,最好的裂分条件???因为,变化大,我们将相似的数据划归到相同的组中。梯度提升树--gradientBoostingD
- R语言分类回归决策树交互式修剪和更美观地可视化分析细胞图像分割数据集
拓端研究室
R语言机器学习r语言分类回归
最近我们被客户要求撰写关于决策树的研究报告,包括一些图形和统计输出。绘制分类或回归树的基本方法的rpart()函数只是调用plot。然而,总的来说,结果并不漂亮。事实证明,一段时间以来,有一种更好的方法来绘制rpart()树。我们可以大概浏览下如何实现,并且进一步研究。视频:从决策树到随机森林:R语言信用卡违约分析信贷数据实例从决策树到随机森林:R语言信用卡违约分析信贷数据实例,时长10:11#绘
- 机器学习系列(8)——提升树与GBDT算法
陌简宁
机器学习
本文介绍提升树模型与GBDT算法。0x01、提升树模型提升树是以分类树或回归树为基本分类器的提升方法。提升树被认为是统计学习中性能最好的方法之一。提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法,以决策树为基函数的提升方法称为提升树(boostingtree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。提升树模型可以表示为决策树的加法模型:其中,表示决策树,为决策树的
- 集成学习——梯度提升树(GBDT)
wxw_csdn
机器学习集成学习GBDT梯度提升树sklearn
集成学习——梯度提升树(GBDT)1模型算法介绍2sklearn中的实现3参考资料1模型算法介绍GBDT也是集成学习Boosting家族的成员,通过采用加法模型,不断减小训练过程中产生的残差算法。即通过多轮迭代,每轮迭代生成一个弱分类器,并在上一轮分类器残差的基础上进行训练,但是弱学习器限定了只能使用CART回归树模型,且迭代思路与Adaboost(利用前一轮迭代弱学习器的误差率来更新训练集的权重
- 学习笔记 ——GBDT(梯度提升决策树)
dastu
数据挖掘机器学习数据挖掘
一.前言GBDT(GradientBoostingDecisionTree)梯度提升决策树,通过多轮迭代生成若干个弱分类器,每个分类器的生成是基于上一轮分类结果来进行训练的。GBDT使用的也是前向分布算法,这一点和Adaboost类似,但不同的是,GBDT的弱分类器一般为Cart回归树(Adaboost一般不做限制)。这里之所以用回归树的原因是GBDT是利用残差逼近,是累加选择,这就和回归输出的连
- 数量生态学||多元回归树中遇到的问题
辣椒炒肉_b811
在数量生态学-多元回归树遇到各种问题,在网上找了各种资料和解决办法,总算顺利解决。为了记住这一过程,在此跟大家分享以下我的解决方法:问题1.用MRT()函数分析mvpart()#从mvpart()函数获得的结果对象中提取MRT结果#必须加载MVPARTwrap和rdaTest程序包spe.ch.mvpart.wrapspe.ch.mvpart.wrap","=",""),c("","","",""
- R语言机器学习与临床预测模型35--分类回归树
科研私家菜
本内容为【科研私家菜】R语言机器学习与临床预测模型系列课程R小盐准备介绍R语言机器学习与预测模型的学习笔记你想要的R语言学习资料都在这里,快来收藏关注【科研私家菜】[图片上传失败...(image-fd5bf4-1648433074208)]01什么是分类回归树CART?分类回归树(ClassificationandRegressionTree,CART)是一种经典的决策树,可以用来处理涉及连续数
- 随机森林回归器
功夫大笨鲨
随机森林学习笔记sklearn机器学习
文章目录前言一、重要参数criterion二、重要属性和接口三、随机森林回归用法总结前言所有的参数,属性与接口,全部和随机森林分类器一致。仅有的不同就是回归树与分类树的不同,不纯度的指标,参数Criterion不一致。一、重要参数criterion回归树衡量分支质量的指标,支持标准有三种:输入"mse"使用均方误差meansquarederror(MSE),父节点和叶子节点之间的均方误差的差额将被
- 机器学习算法之分类和回归树(CART)
迎风斯黄
数学建模美赛机器学习算法分类
分类和回归树(ClassificationandRegressionTrees,CART)是一种强大的机器学习算法,用于解决分类和回归问题。本篇博文将深入介绍CART算法的工作原理、应用领域以及Python示例。算法背景CART算法最早由LeoBreiman等人于1984年提出,它是一种决策树算法,用于将数据集划分成多个子集,每个子集内的数据具有相似的特性。CART算法可以用于分类问题和回归问题,
- 决策树相关知识点以及面试题
mym_74
决策树
文章目录基础知识点熵条件熵联合熵交叉熵信息增益信息增益率Gini指数什么是决策树举例决策树怎么生成的ID3算法C4.5算法和其他模型相比决策树的优点基尼指数(CART算法)决策树的生成最小二乘回归树剪枝一些问题参考基础知识点熵熵是一个物理概念,代表一个系统的混乱程度,在信息论里用于表示一个随机变量不确定性的度量,熵越大,不确定性越高。假设$X$是一个离散分布的随机变量,取值有限,那么的熵可以表示为
- 自动摘要抽取模型
天禧68
决策树算法实现自动摘要决策树其实可以分为分类树和回归树两类,分类树是指输出每个样本的类别,而回归树则是值输出数值结果。在应用中,决策树通常是基于一套规则来将数据分门别类,在一个数据集中,决策树算法会利用每一个样本的属性变量,并确定哪一个属性是最重要的,然后给出一系列的决策去最优地将数据划分为多个子集。274F594F71953EC805C402CB06D52DA8.png构造决策树的关键步骤是分裂
- 李航统计学习方法----决策树章节学习笔记以及python代码
詹sir的BLOG
大数据python决策树算法剪枝
目录1决策树模型2特征选择2.1数据引入2.2信息熵和信息增益3决策树生成3.1ID3算法3.2C4.5算法4决策树的剪枝5CART算法(classificationandregressiontree)5.1回归树算法5.2分类树的生成5.3CART剪枝6PYTHON代码实例决策树算法可以应用于分类问题与回归问题,李航的书中主要讲解的是分类树,构建决策树分为三个过程,分别是特征选择、决策树生成、决
- 机器学习 | Python算法XGBoost
天天酷科研
机器学习模型(ML)机器学习python算法
机器学习|Python算法XGBoostXGBoost是一种基于梯度提升树的机器学习算法,其性能很大程度上依赖于模型参数的选择。下面是一些常用的XGBoost算法调参技巧:学习率(learningrate):学习率控制每个回归树(boostinground)对最终预测结果的贡献程度。较小的学习率可以使模型更加稳定,但可能需要增加更多的回归树才能达到理想的性能。树的数量(n_estimators):
- 排序算法经典模型: 梯度提升决策树(GBDT)的应用实战
数据与后端架构提升之路
#机器学习决策树人工智能算法
目录一、Boosting训练与预测二、梯度增强的思想核心三、如何构造弱学习器和加权平均的权重四、损失函数五、梯度增强决策树六、GBDT生成新特征主要思想构造流程七、梯度增强决策树以及在搜索的应用7.1GDBT模型调参7.1.1框架层面参数n_estimatorssubsample7.1.2分类/回归树层面参数最大特征数max_features决策树最大深度max_depth部节点再划分所需最小样本
- GBDT(梯度提升树 Gradient Boosting Decison Tree)学习笔记
桂花很香,旭很美
NLPPythonboosting
介绍集成学习Boosting一族将多个弱学习器(或称基学习器)提升为强学习器,像AdaBoost,GBDT等都属于“加性模型”(AdditiveModel),即基学习器的线性组合。AdaBoost:先从初始训练集训练出一个基学习器,然后基于基学习器的在这一轮的表现,在下一轮训练中给预测错的训练样本更大权重值,以达到逐步减少在训练集的预测错误率。GBDT:先产生一个弱学习器(CART回归树模型),训
- 17- 梯度提升回归树GBRT (集成算法) (算法)
处女座_三月
机器学习算法回归人工智能决策树
梯度提升回归树:梯度提升回归树是区别于随机森林的另一种集成方法,它的特点在于纠正与加强,通过合并多个决策树来构建一个更为强大的模型。该模型即可以用于分类问题,也可以用于回归问题中。在该模型中,有三个重要参数分别为n_estimators(子树数量)、learning_rate(学习率)、max_depth(最大深度)。n_estimators子树数量:通常用来设置纠正错误的子树数量,梯度提升树通常
- 机器学习基础 集成学习进阶(XGBoost+LightGBM)
落花雨时
人工智能机器学习集成学习数据挖掘人工智能
文章目录一、XGBoost算法原理1.最优模型的构建方法2.XGBoost的目标函数推导2.1目标函数确定2.2CART树的介绍2.3树的复杂度定义2.3.1定义每课树的复杂度2.3.2树的复杂度举例2.4目标函数推导3.XGBoost的回归树构建方法3.1计算分裂节点3.2停止分裂条件判断4.XGBoost与GDBT的区别5.小结二、XGBoost算法api介绍1.XGBoost的安装:2.XG
- 机器学习集成学习进阶Xgboost算法原理
赵广陆
machinelearning机器学习集成学习算法
目录1最优模型的构建方法2XGBoost的目标函数推导2.1目标函数确定2.2CART树的介绍2.3树的复杂度定义2.3.1定义每课树的复杂度2.3.2树的复杂度举例2.4目标函数推导3XGBoost的回归树构建方法3.1计算分裂节点3.2停止分裂条件判断4XGBoost与GDBT的区别5小结1最优模型的构建方法XGBoost(ExtremeGradientBoosting)全名叫极端梯度提升树,
- 【机器学习与R语言】7-回归树和模型树
生物信息与育种
1.理解回归树和模型树决策树用于数值预测:回归树:基于到达叶节点的案例的平均值做出预测,没有使用线性回归的方法。模型树:在每个叶节点,根据到达该节点的案例建立多元线性回归模型。因此叶节点数目越多,一颗模型树越大,比同等回归树更难理解,但模型可能更精确。将回归加入到决策树:image.png分类决策树中,一致性(均匀性)由熵值来度量;数值决策树,则通过统计量(如方差、标准差或平均绝对偏差等)来度量。
- 【Python机器学习】决策树集成——梯度提升回归树
zhangbin_237
Python机器学习机器学习python决策树人工智能回归
理论知识:梯度提升回归树通过合并多个决策树来构建一个更为强大的模型。虽然名字里有“回归”,但这个模型既能用于回归,也能用于分类。与随机森林方法不同,梯度提升采用连续的方式构造树,每棵树都试图纠正前一棵树的错误。默认情况下,梯度提升回归树中没有随机化,而是用到了强预剪枝。梯度提升树通常使用深度很小(1-5之间),这样的模型占用内存小,预测速度也更快。梯度提升背后的主要思想是合并许多简单的模型(弱学习
- 梯度提升决策树(Gradient Boosting Decision Trees,GBDT)
孤嶋
决策树boosting算法梯度提升机器学习
梯度提升决策树(GradientBoostingDecisionTrees,GBDT)提升树是以分类树或回归树为基本分类器的提升方法。提升树被认为是统计学习中性能最好的方法之一。提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法。以决策树为基函数的提升方法称为提升树(boostingtree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。-----------------
- 决策树--CART回归树算法详解
bb8886
机器学习算法详解+实战算法决策树回归
1、介绍(1)简介CART(ClassificationandRegressionTrees)回归树是一种基于决策树的机器学习算法,用于预测连续型目标变量而不是离散型类别变量。(2)生成过程①选择一个特征和相应的切分点,将数据集分为两个子集。②对每个子集递归地重复步骤1,直到满足停止条件。③当达到停止条件时,叶节点的值可以是子集中目标变量的均值或其他统计量。(3)示意图(4)特点①每个叶子节点,都
- 数据挖掘--决策树
人工智能MOS
深度学习人工智能机器学习数据挖掘
1.算法原理决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树分为分类树和回归树两种,分类树对离散变量做决策树,回归树对连续变量做决策树。近来的调查表明决策树也是最经常使用的数据挖掘算法,它的概念非常简单。决策树算法之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它是如何工作的。直观看上去,决策树分类器就像判断模块
- R语言机器学习与临床预测模型36--随机森林Random Forest
科研私家菜
本内容为【科研私家菜】R语言机器学习与临床预测模型系列课程R小盐准备介绍R语言机器学习与预测模型的学习笔记你想要的R语言学习资料都在这里,快来收藏关注【科研私家菜】01什么是随机森林?随机森林(RF,RandomForest)是非常具有代表性的Bagging集成算法,它的所有基评估器都是决策树,分类树组成的森林就叫做随机森林分类器,回归树所集成的森林就叫做随机森林回归器。随机森林是一个用随机方式建
- 2. 回归树
还是那个同伟伟
机器学习回归数据挖掘人工智能
目录1.回归树的数学表达式1.1公式1.2举例2.如何构建回归树2.1树的深度如何决定2.1.1第一种(确定叶子节点个数或者树的深度)2.1.2第二种(子节点所包含样本数)2.1.3第三种(给定精度)2.2划分的节点如何选取2.3叶子节点代表的值Cm如何决定3.损失函数3.1公式3.2优化3.2.1结论3.2.2推导过程1.回归树的数学表达式1.1公式,m就是叶子结点中的序号Rm是第m个叶子结点C
- 机器学习——决策树(二)
风月雅颂
机器学习-基于sklearn机器学习决策树人工智能python算法分类
【说明】文章内容来自《机器学习——基于sklearn》,用于学习记录。若有争议联系删除。1、分类与回归决策树描述的是通过一系列规则对数据进行分类的过程。决策树分为分类树和回树两种,分类树的对离散变量进行决策,回归树用于对连续变量进行决策。1.1分类问题Sklearn提供了DecisionTreeClassifier函数用于分类变量,语法如下:DecisionTreeClassifier(crite
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt