- Prompt相关
伤心美眉
prompt
目录Prompt设计基础一.推理模型(例如gpt-4o,能够快速反应)二.通用模型Prompt相关一.AI需求类型二.Prompt类型三AI幻觉写Prompt技能一.基本技能二.基本策略三常见陷阱四如何写好一个Prompt1.基本模型:2.提示语链应用场景一文案写作二营销策划:三品牌故事Prompt设计基础一.推理模型(例如gpt-4o,能够快速反应)1.能够进行数学推导,逻辑分析,代码生成,复杂
- 人工智能-基础篇-18-什么是RAG(检索增强生成:知识库+向量化技术+大语言模型LLM整合的技术框架)
weisian151
人工智能人工智能语言模型自然语言处理
RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合外部知识检索与大语言模型(LLM)生成能力的技术框架,旨在提升生成式AI在问答、内容创作等任务中的准确性、实时性和领域适应性。1、核心概念大语言模型(LLM)的两大局限性:时效性不足:LLM的训练数据截止于某一时间点,无法获取最新信息(如2025年后的新事件)。知识幻觉:当问题超出模型训练数据范围时,LLM
- 当争论者还在讨论AI的边界,实践者早已用这些技术解决实际问题
渡难繁辰
人工智能拥抱AI人工智能ai
——普通人参与AI革命的关键路径一、AI应用五大核心组件(通俗拆解版)1️⃣LLM:AI的「决策核心」本质:大型语言模型(如DeepSeek、通义千问),具备语言理解与生成能力能力边界:✅处理文本类任务(写作/翻译/摘要)❌无法获取实时信息(如最新股价)⚠️存在“幻觉”(虚构信息)风险案例对比:问:“鲁迅和周树人什么关系?”基础LLM:“两位都是著名作家”(错误)增强版LLM:“周树人是鲁迅本名”
- AI伦理与安全之-哥斯拉与缰绳:如何让“哥斯拉”听懂人类的“悄悄话”?
众链网络
AI伦理与安全AI人工智能AI工具AI智能体
相关文章:AI伦理与安全AI伦理与安全之-镜子与偏见:我们教给它的,究竟是智慧还是偏见?AI伦理与安全之-哥斯拉与缰绳:如何让“哥斯拉”听懂人类的“悄悄话”?AI伦理与安全之-梦境与幻觉:它为何会一本正经地胡说八道?在上一篇中,我们谈到AI像一面“镜子”,会映照出我们数据中的偏见。但那只是AI伦理问题中的“序章”。一个更深邃、更终极的挑战,正横亘在人类与超人工智能(ASI)的未来之间。这个挑战,就
- 【论文复现】利用生成式AI进行选股和分配权重
代码能跑就行管它可读性
人工智能chatgpt
2023年8月,OleksandrRomanko等发表题为《ChatGPT-basedInvestmentPortfolioSelection》(基于ChatGPT进行投资组合选择)的论文。论文探讨了生成式AI模型(如ChatGPT)在投资组合选择中的应用潜力。由于生成式AI模型可能产生幻觉,因此需要谨慎验证和验证其输出。本文采用另一种方法,利用ChatGPT从S&P500市场指数中获取潜在有吸引
- 从被动检索到主动思考:Naive RAG 到 Agentic RAG 的架构演进与关键技术解析
一休哥助手
人工智能架构RAG
摘要随着大语言模型(LLMs)的广泛应用,检索增强生成(Retrieval-AugmentedGeneration,RAG)技术已成为解决模型知识滞后与幻觉问题的核心方案。本文深入剖析从基础NaiveRAG到新一代AgenticRAG的架构演进路径,聚焦关键技术创新点(如递归检索、自适应查询改写、工具集成、多智能体协作),并通过架构图对比与案例分析,揭示其在复杂任务处理中的范式转变。全文超过500
- 在 Dify 平台中集成上下文工程技术
由数入道
人工智能数据库大数据人工智能软件工程dify
1.提升LLM问答准确率的上下文构建与提示策略大语言模型在开放领域问答中常面临幻觉和知识过时等问题。为提高回答准确率,上下文工程的关键是在提示中注入相关背景知识与指导。具体策略包括:检索增强(RAG):通过从知识库中检索相关内容并将其纳入提示,可以显著提升回答的准确性和可信度。Dify提供了知识检索节点,支持向量数据库存储外部知识,并将检索结果通过上下文变量注入LLM提示中。例如,在知识库问答应用
- Cursor黑科技实战:AI编程革命,效率提升300%的秘籍
IT莫染
科技AI编程pythonCursorProDeepSeek-CoderAI重构
目录⚡程序员痛点诊断Cursor核心黑科技揭秘实战演示(附操作截图)场景1:AI秒杀样板代码(效率提升10倍)场景2:智能Debug(精准定位问题)场景3:跨语言迁移(Java→Python)生产力暴涨秘籍黑科技1:AI结对编程(Ctrl+L)黑科技2:代码气味检测(Ctrl+Shift+K)黑科技3:SQL优化(自然语言转SQL)避坑指南:Cursor三大死亡陷阱陷阱1:过度生成幻觉代码陷阱2:
- 大模型岗到底有哪些?这六个主要工作让你秒懂!
AGI大模型学习
机器学习人工智能大数据大模型学习大模型教程大模型程序员
一、Agent智能体Agent:能独立采取行动以实现特定目标的AI个体;Agent的特点:会使用工具,比如查数据库,买车票;拥有记忆,可以记住之前经历;会根据环境、自身记忆、自身能力进行行动决策;Agent的缺陷:带着大模型本身的幻觉情况;可用RAG降低该情况;二、RAG知识库RAG:在设定的知识库中搜索问题的最佳TopK个匹配资料,然后在使用大模型进行润色总结。RAG的特点:解决了大模型的幻觉问
- 结合LangGraph、DeepSeek-R1和Qdrant 的混合 RAG 技术实践
大模型之路
RAGrag
一、引言:混合RAG技术的发展与挑战在人工智能领域,检索增强生成(RAG)技术正成为构建智能问答系统的核心方案。传统RAG通过向量数据库存储文档嵌入并检索相关内容,结合大语言模型(LLM)生成回答,有效缓解了LLM的“幻觉”问题。然而,单一的稠密向量检索(如基于Transformer的嵌入模型)在处理关键词匹配和多义词歧义时存在局限性,而稀疏向量检索(如BM25)虽擅长精确关键词匹配,却缺乏语义理
- 语言的钥匙:提示工程的艺术与驾驭AI的智慧
田园Coder
人工智能科普人工智能科普
当大型语言模型(LLM)如GPT-4展现出令人惊叹的通用能力,却又伴随着“幻觉”、“黑箱”和“不可控”等阴影时,一个核心问题变得无比迫切:人类如何有效地与这些庞然大物沟通,引导它们可靠、安全、精准地完成任务?答案并非在于重新训练这头计算巨兽(成本高昂且周期漫长),而在于掌握一门新兴的关键技艺——提示工程(PromptEngineering)。提示工程,简而言之,就是精心设计输入给模型的自然语言指令
- 【LLaMA 3实战:检索增强】13、LLaMA 3+RAG精准问答系统优化全指南:从检索增强到可信度提升实战
无心水
LLaMA3模型实战专栏llamaLLaMA3对话能力全解析LLaMA3AI大模型LLaMa3实战程序员的AI开发第一课AI入门
一、RAG赋能LLaMA问答系统的核心价值与瓶颈突破(一)准确性提升的三大核心挑战问题类型典型表现传统方案局限RAG+LLaMA3解决方案知识滞后型错误回答包含过时技术细节依赖模型预训练更新动态检索最新文档库上下文误解曲解问题意图或检索内容固定分块导致语义断裂语义感知分块+动态查询扩展事实幻觉虚构不存在的概念或数据缺乏外部事实校验溯源标注+多模型交叉验证(二)RAG与LLaMA3的协同优势动态知识
- Cursor AI 编程黑科技实战技巧
深山技术宅
素养人工智能科技
以下是结合最新实战经验的CursorAI编程黑科技指南,涵盖高效开发、跨工具联动与深度优化技巧:一、核心功能实战技巧智能编辑模式(Ctrl+I)精准上下文理解:跨文件修改时,用自然语言描述需求(如“将utils.py中的日志函数迁移到lib/logger.py并改为异步调用”),自动完成代码迁移与重构。规避幻觉代码:对复杂需求追加约束(例:“用Python连接MySQL,禁用ORM,使用参数化查询
- 面向大语言模型幻觉的关键数据集:系统性综述与分类法
致Great
语言模型人工智能自然语言处理
面向大语言模型幻觉的关键数据集:系统性综述与分类法摘要大语言模型(LargeLanguageModels,LLMs)在自然语言处理的多个领域取得了革命性进展,但其固有的“幻觉”问题——即生成看似合理但与事实不符或与上下文无关的内容——严重制约了其在关键应用中的可靠性与安全性。为了系统性地评估、理解并缓解LLM的幻觉现象,学术界和工业界开发了大量多样化的数据集与基准。本文对大模型幻觉领域的关键数据集
- RPC:跨越代码与硅晶的“握手”——你每天都在用,却可能从未真正理解它
老马爱知
信息技术#分布式计算rpc网络协议网络分布式系统微服务软件架构硬核科普
——从本地调用的幻觉到服务万物的底座,解析这个支配云原生时代的隐形协议引言:一个程序员的日常困境想象一下这个场景:你正在构建一个电商系统。用户服务(管理用户信息)在一台服务器上,订单服务在另一台,而支付服务,则由远在天边的第三方提供。当一个用户下单时,订单服务需要先向用户服务确认用户身份,再调用支付服务完成扣款。这三个服务如同三座孤岛,如何让它们高效、优雅地对话?难道你要手动编写Socket连接,
- 【RAG面试题】LLMs已经具备了较强能力,存在哪些不足点?
一叶千舟
AI面试题【RAG】RAG
目录LLMs核心不足点1、知识过时与静态性(LackofReal-Time&DynamicKnowledge):2、幻觉与事实性错误(Hallucinations&FactualInaccuracies):3、领域专业知识深度不足(LimitedDomain-SpecificExpertise):4、缺乏透明度和可追溯性(LackofTransparency&Traceability):5、上下文
- 深入理解RAG:大语言模型时代的知识增强架构
小胡说技书
#大模型/智能体语言模型架构人工智能python大模型RAG
在人工智能快速发展的今天,大语言模型(LLM)已经展现出令人惊叹的能力。然而,即使是最先进的模型也面临着知识更新滞后、事实性错误(幻觉)和专业领域知识不足等根本性挑战。检索增强生成(Retrieval-AugmentedGeneration,简称RAG)技术的出现,为解决这些问题提供了一个优雅而有效的方案。一、为什么需要RAG?从大模型的局限性说起1.1大语言模型的固有缺陷要理解RAG的价值,我们
- 大模型应用实战1——大模型基本开发知识及GLM4的原理与应用(用大模型做游戏npc)
爱学习的uu
人工智能算法深度学习python
大模型开发思路1.promptengineering注意明确输出格式,如以{"from":"","to":""}这种JSON格式输出。2.多轮互动产生原因:大模型会自己发散(幻觉)3.functionCalling产生原因:用户可以提问不同类型的事情,比如天气和季节解决方法:不要去给大模型设定好要做什么这里面,框架就要承担很重要的职责:1.根据用户注册的函数,在首次Prompt中生成所有Tool的
- 这9个MCP服务器改善AI幻觉(减少99%的代码错误)
李孟聊人工智能
AIAgents实战服务器人工智能AI编程MCPAIAgentAI幻觉
几乎所有AI编程助手都在持续产生过时API的幻觉,忘记项目上下文,并一遍又一遍地犯同样的错误。如果你曾花费数小时调试为什么React组件无法渲染,最后却发现你的AI使用的是2022年已废弃的hooks,你就知道这种痛苦。AI编程工具的上下文限制正在消耗开发者真正的时间和理智。它们会忘记之前的对话,引用过时的文档,并且缺乏对你项目完整范围的认知。但以下内容彻底改变了我的体验。我发现MCP服务器可以将
- 大模型RAG系统面试题及参考答案
大模型大数据攻城狮
算法大模型智能体aiagentpython面试向量数据库RAG
目录什么是RAG?它由哪些核心部分组成?RAG与传统的LLM(如GPT)生成方式有何区别?RAG的设计初衷是什么?解决了哪些问题?检索器(Retriever)在RAG中的作用是什么?生成器(Generator)如何与检索器交互?什么是向量检索(denseretrieval)与稀疏检索(sparseretrieval)?举例说明。RAG如何减少“幻觉(hallucination)”?为什么说RAG可
- 基于 LLM 的网络钓鱼网站检测多代理框架
hao_wujing
网络
大家读完觉得有帮助记得及时关注和点赞!!!抽象网络钓鱼网站继续构成重大的网络安全威胁,通常利用欺骗性结构、品牌冒充和社会工程策略来逃避检测。虽然大型语言模型(LLM)的最新进展通过上下文理解改进了网络钓鱼检测,但大多数现有方法都依赖于面临幻觉风险的单代理分类,并且缺乏可解释性或稳健性。为了解决这些限制,我们提出了PhishDebate,这是一个基于模块化的多代理LLM辩论框架,用于网络钓鱼网站检测
- 百度大模型免费上线,学AI大模型就选近屿智能
3月16日,文心大模型4.5和文心大模型X1正式发布!目前两款模型已免费对用户开放。文心大模型4.5是百度自主研发的新一代原生多模态基础大模型,通过多个模态联合建模实现协同优化,提高多模态理解能力,精进语言能力,提升理解、生成、逻辑、记忆能力和去幻觉、逻辑推理、代码能力,甚至还能理解网络笑话、梗图中的幽默和讽刺,并连贯地完成推理。文心大模型X1具备更强的理解、规划、反思、进化能力,并支持多模态,是
- LangChain、RAG、Agent是什么
ZhangJiQun&MXP
2021AIpython2024大模型以及算力教学langchain语言模型人工智能算法自然语言处理
LangChain、RAG、Agent是什么在本地部署基于DeepSeek-R1模型的商用级知识库系统,旨在帮助开发者搭建智能知识库,提升企业智能化水平。背景与技术概述:随着大语言模型和RAG技术发展,AI知识库广泛应用于各行业,但传统信息管理系统存在问题,大模型也有“幻觉”现象。RAG技术将信息检索与生成模型结合,能缓解“幻觉”,而Agent智能体和LangChain框架可满足复杂业务需求。本地
- llama_index chromadb实现RAG的简单应用
victorwjw
llama数据库RAG
此demo是自己提的一个需求:用modelscope下载的本地大模型实现RAG应用。毕竟大模型本地化有利于微调,RAG使内容更有依据。为什么要用RAG?由于大模型存在一定的局限性:知识时效性不足、专业领域覆盖有限以及生成结果易出现“幻觉”问题,需要通过结合实时数据和专业知识提升生成内容的准确性、时效性和可信度。检索增强生成(RAG)的核心价值在于弥补大模型固有缺陷一个简单样例加载本地大语言模型
- 就离谱!Python相对路径竟暗藏杀机?90%开发者踩过的坑!
倔强青铜3
Python封神榜python后端人工智能开发语言
就离谱!Python相对路径竟暗藏杀机?90%开发者踩过的坑!摘要“为什么同样的代码,在测试环境好好的,部署后就疯狂报FileNotFoundError?”本文揭露Python相对路径的三大致命陷阱,带你破解那些年我们都被骗过的"路径幻觉"!一、血泪现场:谁动了我的相对路径?#假设目录结构如下:#project/#├──main.py#└──resources/#└──config.json#ma
- 《思考是幻觉,自由是剧本》:“独立思考”是精英编造的神话!普通人连认知权都没有...
这篇文章将深入探讨「思考的本质」,不仅仅是哲学上的发问,更是对当代意识操控、社会结构、信息茧房等现象的深刻解构。我们会从神经科学、认知心理学、政治意识形态、技术媒介干预、社会分层等多重维度,解剖思考是如何被「构建」、如何被「利用」、又如何被「驯化」的。《思考的本质:从自由意识到被编程的幻觉》目录引言:你以为你在思考,其实你只是在复读第一章:意识,是进化的工具,还是控制的容器?第二章:思维是你的?不
- Langchain学习笔记(五):检索增强生成(RAG)基础原理
zhangsan0933
LangChainlangchain学习笔记
注:本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。一.RAG系统的基本原理与架构检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种结合了检索系统和生成式AI的混合架构,旨在解决大语言模型(LLM)的知识时效性和幻觉问题。RAG通过从外部知识库检索相关信息,然后将这
- 就离谱!Python相对路径竟暗藏杀机?90%开发者踩过的坑!
python后端人工智能
就离谱!Python相对路径竟暗藏杀机?90%开发者踩过的坑!摘要"为什么同样的代码,在测试环境好好的,部署后就疯狂报FileNotFoundError?"本文揭露Python相对路径的三大致命陷阱,带你破解那些年我们都被骗过的"路径幻觉"!一、血泪现场:谁动了我的相对路径?#假设目录结构如下:#project/#├──main.py#└──resources/#└──config.json#ma
- 一个Rules+3个MCP就让你的Cursor不仅无幻觉还能自主给修Bug,甚至还能把高速回复500次提升到2500次。
asunnyboy861
MCPCursorrulesCursorWindsurfAugmentTare消除幻觉
今天,我将为大家介绍一个神器级的解决方案——一个Rules+3个MCP。经过我的实测,这3个配合能让你的Cursor使用自动测试并优化cursor自己写的代码,不用再手动每次复制粘贴Bug让cursor看,全程无幻觉,还能把高速回复次数提升到2500次,免费版本IDE也可以使用,把1次Token消耗当10个Tokens用,效率大大提高,极大节省消耗次数。不仅限于Cursor,Augment,Win
- RAG:2025年检索增强生成前沿技术完全指南
大模型之路
RAGrag检索增强生产llm
一、RAG技术的核心突破与行业影响在生成式人工智能爆发的今天,检索增强生成(Retrieval-AugmentedGeneration,RAG)正以其独特的技术架构,成为连接静态知识库与动态生成能力的桥梁。这项诞生于2020年的创新技术,通过将信息检索(Retrieval)与文本生成(Generation)解耦又融合的设计,突破了传统语言模型“幻觉”问题的桎梏,为构建可信、可控、可扩展的AI系统奠
- TOMCAT在POST方法提交参数丢失问题
357029540
javatomcatjsp
摘自http://my.oschina.net/luckyi/blog/213209
昨天在解决一个BUG时发现一个奇怪的问题,一个AJAX提交数据在之前都是木有问题的,突然提交出错影响其他处理流程。
检查时发现页面处理数据较多,起初以为是提交顺序不正确修改后发现不是由此问题引起。于是删除掉一部分数据进行提交,较少数据能够提交成功。
恢复较多数据后跟踪提交FORM DATA ,发现数
- 在MyEclipse中增加JSP模板 删除-2008-08-18
ljy325
jspxmlMyEclipse
在D:\Program Files\MyEclipse 6.0\myeclipse\eclipse\plugins\com.genuitec.eclipse.wizards_6.0.1.zmyeclipse601200710\templates\jsp 目录下找到Jsp.vtl,复制一份,重命名为jsp2.vtl,然后把里面的内容修改为自己想要的格式,保存。
然后在 D:\Progr
- JavaScript常用验证脚本总结
eksliang
JavaScriptjavaScript表单验证
转载请出自出处:http://eksliang.iteye.com/blog/2098985
下面这些验证脚本,是我在这几年开发中的总结,今天把他放出来,也算是一种分享吧,现在在我的项目中也在用!包括日期验证、比较,非空验证、身份证验证、数值验证、Email验证、电话验证等等...!
&nb
- 微软BI(4)
18289753290
微软BI SSIS
1)
Q:查看ssis里面某个控件输出的结果:
A MessageBox.Show(Dts.Variables["v_lastTimestamp"].Value.ToString());
这是我们在包里面定义的变量
2):在关联目的端表的时候如果是一对多的关系,一定要选择唯一的那个键作为关联字段。
3)
Q:ssis里面如果将多个数据源的数据插入目的端一
- 定时对大数据量的表进行分表对数据备份
酷的飞上天空
大数据量
工作中遇到数据库中一个表的数据量比较大,属于日志表。正常情况下是不会有查询操作的,但如果不进行分表数据太多,执行一条简单sql语句要等好几分钟。。
分表工具:linux的shell + mysql自身提供的管理命令
原理:使用一个和原表数据结构一样的表,替换原表。
linux shell内容如下:
=======================开始 
- 本质的描述与因材施教
永夜-极光
感想随笔
不管碰到什么事,我都下意识的想去探索本质,找寻一个最形象的描述方式。
我坚信,世界上对一件事物的描述和解释,肯定有一种最形象,最贴近本质,最容易让人理解
&
- 很迷茫。。。
随便小屋
随笔
小弟我今年研一,也是从事的咱们现在最流行的专业(计算机)。本科三流学校,为了能有个更好的跳板,进入了考研大军,非常有幸能进入研究生的行业(具体学校就不说了,怕把学校的名誉给损了)。
先说一下自身的条件,本科专业软件工程。主要学习就是软件开发,几乎和计算机没有什么区别。因为学校本身三流,也就是让老师带着学生学点东西,然后让学生毕业就行了。对专业性的东西了解的非常浅。就那学的语言来说
- 23种设计模式的意图和适用范围
aijuans
设计模式
Factory Method 意图 定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method 使一个类的实例化延迟到其子类。 适用性 当一个类不知道它所必须创建的对象的类的时候。 当一个类希望由它的子类来指定它所创建的对象的时候。 当类将创建对象的职责委托给多个帮助子类中的某一个,并且你希望将哪一个帮助子类是代理者这一信息局部化的时候。
Abstr
- Java中的synchronized和volatile
aoyouzi
javavolatilesynchronized
说到Java的线程同步问题肯定要说到两个关键字synchronized和volatile。说到这两个关键字,又要说道JVM的内存模型。JVM里内存分为main memory和working memory。 Main memory是所有线程共享的,working memory则是线程的工作内存,它保存有部分main memory变量的拷贝,对这些变量的更新直接发生在working memo
- js数组的操作和this关键字
百合不是茶
js数组操作this关键字
js数组的操作;
一:数组的创建:
1、数组的创建
var array = new Array(); //创建一个数组
var array = new Array([size]); //创建一个数组并指定长度,注意不是上限,是长度
var arrayObj = new Array([element0[, element1[, ...[, elementN]]]
- 别人的阿里面试感悟
bijian1013
面试分享工作感悟阿里面试
原文如下:http://greemranqq.iteye.com/blog/2007170
一直做企业系统,虽然也自己一直学习技术,但是感觉还是有所欠缺,准备花几个月的时间,把互联网的东西,以及一些基础更加的深入透析,结果这次比较意外,有点突然,下面分享一下感受吧!
&nb
- 淘宝的测试框架Itest
Bill_chen
springmaven框架单元测试JUnit
Itest测试框架是TaoBao测试部门开发的一套单元测试框架,以Junit4为核心,
集合DbUnit、Unitils等主流测试框架,应该算是比较好用的了。
近期项目中用了下,有关itest的具体使用如下:
1.在Maven中引入itest框架:
<dependency>
<groupId>com.taobao.test</groupId&g
- 【Java多线程二】多路条件解决生产者消费者问题
bit1129
java多线程
package com.tom;
import java.util.LinkedList;
import java.util.Queue;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.loc
- 汉字转拼音pinyin4j
白糖_
pinyin4j
以前在项目中遇到汉字转拼音的情况,于是在网上找到了pinyin4j这个工具包,非常有用,别的不说了,直接下代码:
import java.util.HashSet;
import java.util.Set;
import net.sourceforge.pinyin4j.PinyinHelper;
import net.sourceforge.pinyin
- org.hibernate.TransactionException: JDBC begin failed解决方案
bozch
ssh数据库异常DBCP
org.hibernate.TransactionException: JDBC begin failed: at org.hibernate.transaction.JDBCTransaction.begin(JDBCTransaction.java:68) at org.hibernate.impl.SessionImp
- java-并查集(Disjoint-set)-将多个集合合并成没有交集的集合
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.ut
- Java PrintWriter打印乱码
chenbowen00
java
一个小程序读写文件,发现PrintWriter输出后文件存在乱码,解决办法主要统一输入输出流编码格式。
读文件:
BufferedReader
从字符输入流中读取文本,缓冲各个字符,从而提供字符、数组和行的高效读取。
可以指定缓冲区的大小,或者可使用默认的大小。大多数情况下,默认值就足够大了。
通常,Reader 所作的每个读取请求都会导致对基础字符或字节流进行相应的读取请求。因
- [天气与气候]极端气候环境
comsci
环境
如果空间环境出现异变...外星文明并未出现,而只是用某种气象武器对地球的气候系统进行攻击,并挑唆地球国家间的战争,经过一段时间的准备...最大限度的削弱地球文明的整体力量,然后再进行入侵......
那么地球上的国家应该做什么样的防备工作呢?
&n
- oracle order by与union一起使用的用法
daizj
UNIONoracleorder by
当使用union操作时,排序语句必须放在最后面才正确,如下:
只能在union的最后一个子查询中使用order by,而这个order by是针对整个unioning后的结果集的。So:
如果unoin的几个子查询列名不同,如
Sql代码
select supplier_id, supplier_name
from suppliers
UNI
- zeus持久层读写分离单元测试
deng520159
单元测试
本文是zeus读写分离单元测试,距离分库分表,只有一步了.上代码:
1.ZeusMasterSlaveTest.java
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Assert;
import org.j
- Yii 截取字符串(UTF-8) 使用组件
dcj3sjt126com
yii
1.将Helper.php放进protected\components文件夹下。
2.调用方法:
Helper::truncate_utf8_string($content,20,false); //不显示省略号 Helper::truncate_utf8_string($content,20); //显示省略号
&n
- 安装memcache及php扩展
dcj3sjt126com
PHP
安装memcache tar zxvf memcache-2.2.5.tgz cd memcache-2.2.5/ /usr/local/php/bin/phpize (?) ./configure --with-php-confi
- JsonObject 处理日期
feifeilinlin521
javajsonJsonOjbectJsonArrayJSONException
写这边文章的初衷就是遇到了json在转换日期格式出现了异常 net.sf.json.JSONException: java.lang.reflect.InvocationTargetException 原因是当你用Map接收数据库返回了java.sql.Date 日期的数据进行json转换出的问题话不多说 直接上代码
&n
- Ehcache(06)——监听器
234390216
监听器listenerehcache
监听器
Ehcache中监听器有两种,监听CacheManager的CacheManagerEventListener和监听Cache的CacheEventListener。在Ehcache中,Listener是通过对应的监听器工厂来生产和发生作用的。下面我们将来介绍一下这两种类型的监听器。
- activiti 自带设计器中chrome 34版本不能打开bug的解决
jackyrong
Activiti
在acitivti modeler中,如果是chrome 34,则不能打开该设计器,其他浏览器可以,
经证实为bug,参考
http://forums.activiti.org/content/activiti-modeler-doesnt-work-chrome-v34
修改为,找到
oryx.debug.js
在最头部增加
if (!Document.
- 微信收货地址共享接口-终极解决
laotu5i0
微信开发
最近要接入微信的收货地址共享接口,总是不成功,折腾了好几天,实在没办法网上搜到的帖子也是骂声一片。我把我碰到并解决问题的过程分享出来,希望能给微信的接口文档起到一个辅助作用,让后面进来的开发者能快速的接入,而不需要像我们一样苦逼的浪费好几天,甚至一周的青春。各种羞辱、谩骂的话就不说了,本人还算文明。
如果你能搜到本贴,说明你已经碰到了各种 ed
- 关于人才
netkiller.github.com
工作面试招聘netkiller人才
关于人才
每个月我都会接到许多猎头的电话,有些猎头比较专业,但绝大多数在我看来与猎头二字还是有很大差距的。 与猎头接触多了,自然也了解了他们的工作,包括操作手法,总体上国内的猎头行业还处在初级阶段。
总结就是“盲目推荐,以量取胜”。
目前现状
许多从事人力资源工作的人,根本不懂得怎么找人才。处在人才找不到企业,企业找不到人才的尴尬处境。
企业招聘,通常是需要用人的部门提出招聘条件,由人
- 搭建 CentOS 6 服务器 - 目录
rensanning
centos
(1) 安装CentOS
ISO(desktop/minimal)、Cloud(AWS/阿里云)、Virtualization(VMWare、VirtualBox)
详细内容
(2) Linux常用命令
cd、ls、rm、chmod......
详细内容
(3) 初始环境设置
用户管理、网络设置、安全设置......
详细内容
(4) 常驻服务Daemon
- 【求助】mongoDB无法更新主键
toknowme
mongodb
Query query = new Query(); query.addCriteria(new Criteria("_id").is(o.getId())); &n
- jquery 页面滚动到底部自动加载插件集合
xp9802
jquery
很多社交网站都使用无限滚动的翻页技术来提高用户体验,当你页面滑到列表底部时候无需点击就自动加载更多的内容。下面为你推荐 10 个 jQuery 的无限滚动的插件:
1. jQuery ScrollPagination
jQuery ScrollPagination plugin 是一个 jQuery 实现的支持无限滚动加载数据的插件。
2. jQuery Screw
S