《数据分析实战-托马兹.卓巴斯》读书笔记第11章--代理人基的模拟(加油站加油、电动车耗尽电量、狼-羊掠食)

python数据分析个人学习读书笔记-目录索引

 

 第11章涵盖了代理人基的模拟;我们模拟的场景有:加油站的加油过程,电动车耗尽电量以及狼——羊的掠食。

本章中,会学习以下技巧:
·使用SimPy模拟加油站的加油过程
·模拟电动车耗尽电量的场景
·判断羊群面对群狼时是否有团灭的风险

11.1导论

获取数据总是一件麻烦事:收集数据就很累,然后要提取需要的特征,还得费很多功夫。而且,收集过来的数据容易导致短视:你只看到眼前几片树叶,忽略了整个森林。
不过,某些情况下你可以进行模拟。当不可能观察每个局部时,或者想在多种情况下测试模型时,或者要验证假设时,模拟就很有用了。
很多书介绍了如何进行金融数据的模拟。本书中不打算这么做。相反,我们将集中精力关注代理人基模型。这种模拟创建了一个虚拟世界(或环境),我们可以将代理人放置其中。代理人几乎可以是你考虑的任何物体:在我们的模拟中,代理人会是加油站、车、充电站、羊或狼。在模拟中,代理人与代理人、代理人与环境都互相影响。
不过,非常有效的代理人基模拟有些局限。最主要的是代理人之间互动的局限;错失一个重要的行为可能就会导致错误的结论。比如,路上的司机总是遵守章法,这么一个假设就会导致一个结论,路上只需要一条车道,而在现实中,人们的行为是多种多样的,只有一条车道就会引发长长的拥堵。如果想进一步了解代理人基模型及其限制,我推荐这篇文章:http://ijcsi.org/papers/IJCSI-9-1-3-115-119.pdf。
本章将说一说如何用SimPy设计并运行模拟。

原作者强烈推荐SimPy官网上的建模介绍:https://simpy.readthedocs.org/en/latest/topical_guides/index.html。
你可以从http://pypi.python.org/pypi/SimPy/下载软件包。
如果你用的是Anaconda,可以使用下面的命令:

/* 
pip install -U simpy
*/

本章我们会接触Python更高深的部分:编写和继承类,以及使用异常中断模拟。别紧张,我们会详细讲解的。

/*
pip install simpy
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Collecting simpy
  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/5a/64/8f0fc71400d41b6c2c6443d333a1cade458d23d4945ccda700c810ff6aae/simpy-3.0.11-py2.py3-none-any.whl
Installing collected packages: simpy
Successfully installed simpy-3.0.11
FINISHED
 */

11.2使用SimPy模拟加油站的加油过程

你如果有车,那去加油站就是常规活动了:取下泵,刷卡,加油,离开。
不过,如果你要建一个加油站,那就要提前考虑一系列问题了:
·车辆加油的频率是多少?
·这对每个司机的等待时长有什么样的影响?(我们可不希望有人因为等太久而去了竞争者那里)
·能不能满足需求?
·多久需要让供应商装满油箱?
·能产生多少利润?
这些问题都得问问自己。
还有那些如果。如果加两个加油机呢?如果用更大的油箱呢,这样不用经常叫供应商过来了?如果车辆来加油站的频率不是30秒一辆,二是45秒一辆呢?这会如何影响我的利润?
在你投入数百万之前,试试模拟,测试各种场景,这是一个便宜但宝贵的工具。
注意下,这个章节的流程和本书之前的不同。
准备:需要装好SimPy和NumPy。
代码实现:模拟的代码很长,但既然你书都看到这里了,对你来说,代码的逻辑应该是相当直接的。GitHub上的源代码——sim_gasStation.py文件——可能有些地方不清晰。我们下一节会一步一步地过一遍:

 1 import numpy as np
 2 import simpy
 3 import itertools
 4 if __name__ == '__main__':
 5 # what is the simulation horizon (in seconds)
 6 #模拟时限,以秒计 
 7 SIM_TIME = 10 * 60 * 60 # 10 hours
 8 
 9 # create the environment创建环境
10 env = simpy.Environment()
11 
12 # create the gas station
13 gasStation = GasStation(env)
14 
15 # print the header
16 print('\t\t\t\t\t\t     Left')
17 header =  'CarID\tArrive\tStart\tFinish\tGal'
18 header += '\tType\tPetrol\tDiesel'
19 print(header)
20 print('-' * 62)
21 
22 # create the process of generating cars 生成车
23 env.process(Car.generate(env, gasStation))
24 
25 # and run the simulation运行模拟 
26 env.run(until = SIM_TIME) 

原理:照例先引入需要的模块。
我们的代码以if__name__=='__main__'(这是Python的约定)。先决定模拟程序要跑多久。本例中,我们将一轮当成1秒。然后创建环境(.Environment(...))。这是模拟的基础。环境封装了时间,并处理模拟中代理人之间的互动。
下面,创建第一个代理人,GasStation:

 1 class GasStation(object):
 2     '''
 3         Gas station class.
 4     '''
 5     def __init__(self, env):
 6         '''
 7             The main constructor of the class
 8 
 9             @param env -- environment object
10         '''
11         # keep a pointer to the environment in the class 保存一个指向环境的指针
12         self.env = env
13 
14         # fuel capacity (gallons) and reservoirs
15         # to track level
16         #油箱(加仑)和贮油器
17         self.CAPACITY = {'PETROL': 8000, 'DIESEL': 3000}
18         self.RESERVOIRS = {}
19         self.generateReservoirs(self.env, self.CAPACITY)
20 
21         # number of pumps for each fuel type 每种染料的泵数
22         self.PUMPS_COUNT = {'PETROL': 3, 'DIESEL': 1}
23         self.PUMPS = {}
24         self.generatePumps(self.env, self.CAPACITY,
25             self.PUMPS_COUNT)
26 
27         # how quickly they pump the fuel 抽出的速度
28         self.SPEED_REFUEL = 0.3 # 0.3 gal/s
29 
30         # set the minimum amount of fuel left before
31         # replenishing
32         #设置在补足前的最少油量
33         self.MINIMUM_FUEL = {'PETROL': 300, 'DIESEL': 100}
34 
35         # how long does it take for the track to get
36         # to the station after placing the call        
37         self.TRUCK_TIME = 200
38         self.SPEED_REPLENISH = 5
39 
40         # add the process to control the levels of fuel
41         # available for sale
42         self.control = self.env.process(self.controlLevels())
43 
44         print('Gas station generated...')

Python中的类都有__init__(self,...)方法。创建GasStation对象时会调用这个方法。
你可以创建一个只有静态方法的类,那就不需要__init__(self,...)了。静态方法的执行不需要对象。也就是说,调用这个方法不依赖于任何对象的性质,但这个方法依然与类的主题有关。
比如,你有一个Triangle类,创建了使用勾股定理计算弦长的方法length。你也可以用这个方法计算平面上两点之间的距离(笛卡尔坐标系)。这时,你就可以将这个方法声明为静态的,并在需要时调用,以实现代码的重用。
你可能已经注意到了,self(几乎)出现在所有方法里。self参数是指向实例对象自身的引用(也由此得名)。
在__init__(self,...)方法内,你应该列出所有实例对象都会拥有的内部属性。我们的加油站会提供两种燃料:汽油和柴油。油箱分别可以容纳8000加仑和3000加仑。所以self.RESERVOIRS属性有两种.Container(...):对应这两种燃料。.Container(...)对象其实就是许多处理过程可以共享的资源;每个过程都可以访问这个公用的源,直到结束,或.Container(...)中用光了。.generateReservoirs(...)方法实现了这些逻辑:

1     def generateReservoirs(self, env, levels):
2         '''
3             Helper method to generate reservoirs
4         '''
5         for fuel in levels:
6             self.RESERVOIRS[fuel] = simpy.Container(
7                 env, levels[fuel], init=levels[fuel])

.Container(...)方法以指向.Environment(...)对象的指针作为第一个参数,贮油器的容量作为第二个参数,初始量作为第三个参数。
用generatePumps(...)方法创建FuelPump对象:

1     def generatePumps(self, env, fuelTypes, noOfPumps):
2         '''
3             Helper method to generate pumps 生成泵的辅助函数
4         '''
5         for fuelType in fuelTypes:
6                 self.PUMPS[fuelType] = FuelPump(
7                     env, noOfPumps[fuelType])

FuelPump对象唯一的属性self.resource放的是SimPy的.Resource(...)对象。可以将.Resource(...)对象看成某种资源的守门员。可用来限制并行访问某种.Container(...)的过程的数目。
在我看来,区分.Container(...)和.Resource(...)的最简单办法是想想加油站的运转方式。同一个(地下)油箱连有多个贮油器。任何时候,一辆车可使用一个贮油器;所以加油站的吞吐量由贮油器的数目限定。这就是我们将FuelPump作为.Resource(...)的原因。另外,所有的贮油器都连接油箱,我们使用.Container(...)对象为这种行为建模。来了一辆车,我们使用.Resource(...)的.request(...)方法访问一个贮油器;如果所有的贮油器都被占用了,就得等待。
然后指定输油的速度——本例中是0.3 gal/s——以及重新装满前的最小油量;对于汽油,我们看到少于300加仑时就要叫油车来,对于柴油,这条线在100加仑。计算中也要考虑油车在路上花的时间(假设是300秒),以及5加仑每秒的速度下,重新充满需要的时间。
__init__(self,...)方法的最后一个指令创建环境中第一个过程;将.controlLevels()方法放到环境中:

 1     def controlLevels(self):
 2         '''
 3             A method to check the levels of fuel (every 5s)
 4             and replenish when necessary
 5         '''
 6         while True:
 7             # loop through all the reservoirs 循环所有油箱
 8             for fuelType in self.RESERVOIRS:
 9 
10                 # and if the level is below the minimum
11                 #如果油量不是最小值
12                 if self.RESERVOIRS[fuelType].level \
13                     < self.MINIMUM_FUEL[fuelType]:
14 
15                     # replenishes补满
16                     yield env.process(
17                         self.replenish(fuelType))
18                 # wait 5s before checking again--5秒后检查
19                 yield env.timeout(5)

这个方法在整个模拟期间持续循环。循环内使用yield env.timeout(5),每5秒检查油箱的量。
整个模拟期间,各种代理人都会创建与挂起过程。yield命令挂起过程,并在之后由环境或另一个过程唤起。我们的例子中,yield env.timeout(5)将当前过程挂起5秒;5秒后,环境会触发另一次遍历。
循环中,我们检查所有油箱是否不足最小量。如果不足,我们挂起过程,叫来油车,即replenish(...)方法。当前遍历只有在完成补充工作后才会恢复:

 1     def replenish(self, fuelType):
 2         '''
 3             A method to replenish the fuel
 4         '''
 5         # print nicely so we can distinguish when the truck
 6         # was called
 7         print('-' * 62)
 8         print('CALLING TRUCK AT {0:4.0f}s.' \
 9             .format(self.env.now))
10         print('-' * 62)
11 
12         # waiting for the truck to come (lead time)等油车来
13         yield self.env.timeout(self.TRUCK_TIME)
14 
15         # let us know when the truck arrived
16         print('-' * 62)
17         print('TRUCK ARRIVING AT {0:4.0f}s' \
18             .format(self.env.now))
19 
20         # how much we need to replenish 要补多少
21         toReplenish = self.RESERVOIRS[fuelType].capacity - \
22             self.RESERVOIRS[fuelType].level
23 
24         print('TO REPLENISH {0:4.0f} GALLONS OF {1}' \
25             .format(toReplenish, fuelType))
26         print('-' * 62)
27 
28         # wait for the truck to dump the fuel into
29         # the reservoirs 等油车补满
30         yield self.env.timeout(toReplenish \
31             / self.SPEED_REPLENISH)
32 
33         # and then add the fuel to the available one
34         yield self.RESERVOIRS[fuelType].put(toReplenish)
35 
36         print('-' * 62)
37         print('FINISHED REPLENISHING AT {0:4.0f}s.' \
38             .format(self.env.now))
39         print('-' * 62)

注意有些情况下,用\分隔的多行命令会报错。你可以将多行命令放进括号(...)来避免错误。
replenish(...)方法中,我们先挂起过程,等油车到达。等过程恢复时,我们看看要补充多少。.Container(...)对象有两个我们要调用的属性:.capacity和.level。.capacity属性返回的是油箱的容量,而.level属性返回的是当前的存量。差值就是要补充的量。知道了这个,又知道了输油的速度,我们就能算出要花多少时间。完成后,我们将量加到对应的种类上,并返回到调用函数。
最后,定义Car类:

 1 class Car(object):
 2     '''
 3         Car class.
 4     '''
 5     def __init__(self, i, env, gasStation):
 6         '''
 7             The main constructor of the class
 8 
 9             @param i          -- consecutive car id
10             @param env        -- environment object
11             @param gasStation -- gasStation object
12         '''
13         # pointers to the environment and gasStation objects
14         #指向环境和加油站对象的指针
15         self.env = env
16         self.gasStation = gasStation
17 
18         # fuel type required by the car 需要的燃油种类
19         self.FUEL_TYPE = np.random.choice(
20             ['PETROL', 'DIESEL'], p=[0.7, 0.3])
21 
22         # details about the car 车的明细
23         self.TANK_CAPACITY = np.random.randint(12, 23) # gal
24         
25         # how much fuel left 剩余油量
26         self.FUEL_LEFT = self.TANK_CAPACITY \
27             * np.random.randint(10, 40) / 100
28 
29         # car id 车ID
30         self.CAR_ID = i
31 
32         # start the refueling process 开始加油过程
33         self.action = env.process(self.refuel())

我们的车需要特定的油,以及预先定义好的油箱容量。创建一个car对象时,会随机分配一个值作为剩余的油量——在油箱容量的10%到40%之间。
加油过程开始:

 1     def refuel(self):
 2         '''
 3             Refueling method
 4         '''
 5         # what's the fuel type so we request the right pump
 6         #燃油种类,以便我们请求正确的泵
 7         fuelType = self.FUEL_TYPE
 8 
 9         # let's get the pumps object对应的泵对象
10         pump = gasStation.getPump(fuelType)
11 
12         # and request a free pump 请求空闲的泵
13         with pump.request() as req:
14             # time of arrival at the gas station到达加油站的时间
15             arrive = self.env.now
16 
17             # wait for the pump等待泵
18             yield req
19 
20             # how much fuel does the car need 需要多少燃油
21             required = self.TANK_CAPACITY - self.FUEL_LEFT
22             
23             # time of starting refueling 开始加油的时间
24             start = self.env.now
25             yield self.gasStation.getReservoir(fuelType)\
26                 .get(required)
27 
28             # record the fuel levels记录油量
29             petrolLevel = self.gasStation\
30                         .getReservoir('PETROL').level
31             dieselLevel = self.gasStation\
32                         .getReservoir('DIESEL').level
33 
34             # and wait for it to finish等待结束
35             yield env.timeout(required / gasStation \
36                 .getRefuelSpeed())
37 
38             # finally, print the details to the screen
39             refuellingDetails = '{car}\t{tm}\t{start}'
40             refuellingDetails += '\t{fin}\t{gal:2.2f}\t{fuel}'
41             refuellingDetails += '\t{petrol}\t{diesel}'
42 
43             print(refuellingDetails \
44                 .format(
45                     car=self.CAR_ID,
46                     tm=arrive,
47                     start=int(start),
48                     fin=int(self.env.now),
49                     gal=required, fuel=fuelType,
50                     petrol=int(petrolLevel),
51                     diesel=int(dieselLevel)
52                 )
53             )

我们先从GasStation对象调用特定燃油的泵。燃油种类是我们之前创建的.Resource(...):这个对象对每种燃油,都有对应的可用的泵的数目——汽油三个,柴油一个。每来一辆车,都用.request(...)对象访问泵。然后就等待请求完成。
一旦泵可用,就恢复执行了。我们先计算要加多少油,并开始加油过程。这个过程会挂起补足油所花的时间。
这样就是整个加油过程啦。
generate(...)静态方法在模拟过程中随机生成车(每5到45秒一辆):

 1     @staticmethod
 2     def generate(env, gasStation):
 3         '''
 4             A static method to generate cars 生成车的静态方法
 5         '''
 6         # generate as many cars as possible during the 
 7         # simulation run在模拟过程中随机生成车
 8         for i in itertools.count():
 9             # simulate that a new car arrives between 5s 
10             # and 45s 每5-45秒一辆
11             yield env.timeout(np.random.randint(5, 45))
12             
13             # create a new car
14             Car(i, env, gasStation)

我们用env.process(Car.generate(env,gasStation))命令将生成车的过程加到环境中。
如你所见,静态方法同对象方法不同,不需要self关键字。
最后调用.run(...)方法。until参数指定了模拟要跑多久。
一旦执行程序,你会看到类似这样的界面:
《数据分析实战-托马兹.卓巴斯》读书笔记第11章--代理人基的模拟(加油站加油、电动车耗尽电量、狼-羊掠食)_第1张图片
整个模拟中,你会看到油车何时被召唤,以及整个过程结束的时间:
《数据分析实战-托马兹.卓巴斯》读书笔记第11章--代理人基的模拟(加油站加油、电动车耗尽电量、狼-羊掠食)_第2张图片

更多:那利润呢?这里我们假设加油站,每加仑汽油是1.95美元买入、2.45美元卖出,柴油是1.67美元买入、2.23美元卖出。我们也加上了充满油箱的初始花费(sim_gasStation_alternative.py文件):

1         # cash registry 增加记账
2         self.sellPrice = {'PETROL': 2.45, 'DIESEL': 2.23}
3         self.buyPrice  = {'PETROL': 1.95, 'DIESEL': 1.67}
4         self.cashIn = 0
5         self.cashOut = np.sum(
6             [ self.CAPACITY[ft] \
7             * self.buyPrice[ft] 
8             for ft in self.CAPACITY])
9         self.cashLost = 0

在replenish(...)方法中,我们也加上了一行付费行为:

1    # and pay for the delivery 增加付费行为
2      self.pay(toReplenish * self.buyPrice[fuelType])

.pay(...)方法将金额加到(支付给供应商的)self.cashOut变量上。
我们也假设有些消费者,在等了一段时间后,会不耐烦走掉(假设是5分钟——参看下面代码中的waitedTooLong布尔变量)。最后,Car的refuel(...)方法就变成了这样:

 1     def refuel(self):
 2         '''
 3             Refueling method
 4         '''
 5         # what's the fuel type so we request the right pump
 6         fuelType = self.FUEL_TYPE
 7 
 8         # let's get the pumps object
 9         pump = gasStation.getPump(fuelType) 
10 
11         # and request a free pump
12         with pump.request() as req:
13             # time of arrival at the gas station
14             arrive = self.env.now
15 
16             # wait for the pump
17             yield req
18 
19             # how much fuel does the car need
20             required = self.TANK_CAPACITY - self.FUEL_LEFT
21 
22             # how long have been waiting for
23             waitedTooLong = self.env.now - arrive > 5 * 60
24 
25             if waitedTooLong:
26                 # leave一怒而去
27                 print('-' * 70)
28                 print('CAR {0} IS LEAVING -- WAIT TOO LONG'\
29                     .format(self.CAR_ID)
30                 )
31                 print('-' * 70)
32                 gasStation.lost(required * self.gasStation\
33                     .getFuelPrice(fuelType))
34             else:
35                 # time of starting refueling
36                 start = self.env.now
37                 yield self.gasStation.getReservoir(fuelType)\
38                     .get(required)
39 
40                 # record the fuel levels
41                 petrolLevel = self.gasStation\
42                             .getReservoir('PETROL').level
43                 dieselLevel = self.gasStation\
44                             .getReservoir('DIESEL').level
45 
46                 # and wait for it to finish
47                 yield env.timeout(required / gasStation \
48                     .getRefuelSpeed())
49 
50                 # time finished refueling
51                 fin = self.env.now
52 
53                 # pay 付费
54                 toPay = required * self.gasStation\
55                     .getFuelPrice(fuelType)
56                 self.gasStation.sell(toPay)
57 
58                 yield env.timeout(np.random.randint(15, 90))
59 
60                 # finally, print the details to the screen
61                 refuellingDetails  = '{car}\t{tm}\t{start}'
62                 refuellingDetails += '\t{fin}'
63                 refuellingDetails += '\t{gal:2.2f}\t{fuel}'
64                 refuellingDetails += '\t{petrol}\t{diesel}'
65                 refuellingDetails += '\t${pay:3.2f}'
66 
67                 print(refuellingDetails \
68                     .format(car=self.CAR_ID, tm=arrive, 
69                         start=int(start), 
70                         fin=int(self.env.now), 
71                         gal=required, fuel=fuelType, 
72                         petrol=int(petrolLevel), 
73                         diesel=int(dieselLevel),
74                         pay=toPay
75                     )
76                 )

车辆等得太久,就会开走:

/*
----------------------------------------------------------------------
CAR 1776 IS LEAVING -- WAIT TOO LONG
----------------------------------------------------------------------
----------------------------------------------------------------------
CAR 1778 IS LEAVING -- WAIT TOO LONG
----------------------------------------------------------------------
CAR 1780 IS LEAVING -- WAIT TOO LONG
----------------------------------------------------------------------

......
 */

你也会看到我们往GasStation类中加了一些新方法,.getFuelPrice(...)和.sell(...)。这些是用于计算并记录燃油销售额的,.sell(...)将金额加到self.cashIn变量上。
在整个模拟结束后,我们要打印结果:

 1   # 打印记账结果
 2    def printCashRegister(self):
 3         print('\nTotal cash in:   ${0:8.2f}'\
 4             .format(self.cashIn))
 5         print('Total cash out:  ${0:8.2f}'\
 6             .format(self.cashOut))
 7         print('Total cash lost: ${0:8.2f}'\
 8             .format(self.cashLost))
 9         print('\nProfit: ${0:8.2f}'\
10             .format(self.cashIn - self.cashOut))
11         print('Profit (if no loss of customers): ${0:8.2f}'\
12             .format(self.cashIn - self.cashOut \
13                 + self.cashLost))

前面的方法产生如下输出:
《数据分析实战-托马兹.卓巴斯》读书笔记第11章--代理人基的模拟(加油站加油、电动车耗尽电量、狼-羊掠食)_第3张图片
可见,如果加油站有更多的贮油器,挣到的就能超过8500美元。根据这些模拟参数,头10个小时,利润只有154.74美元。模拟20个小时,利润涨到1943.06美元,但是损失的机会成本也上升到8508.01美元。看起来加油站需要更多的贮油器。

11.3模拟电动车耗尽电量的场景

电动车如今越来越流行。不过尽管廉价,这种车在长途旅行中使用却有些限制,至少半路充电是个问题。
本技巧中,我们将模拟电动车耗尽电量的场景。我们在路上随机放置充电站。并且,我们允许司机没充满电就开出车。
准备:需要装好SimPy和NumPy。
代码实现:和前一技巧类似,我们先定义环境和所有代理人(sim_recharge.py文件):

 1 import numpy as np
 2 import simpy
 3 
 4 
 5 if __name__ == '__main__':
 6     # what is the simulation horizon (in minutes)
 7     SIM_TIME = 10 * 60 * 60 # 10 hours
 8 
 9     # create the environment
10     env = simpy.Environment()
11 
12     # create recharge stations
13     rechargeStations = RechargeStation \
14         .generateRechargeStations(SIM_TIME)
15 
16     # create the driver and the car
17     driver = Driver(env)
18     car = Car(env, driver, rechargeStations)
19 
20     # print the header
21     print()
22     print('-' * 30)
23     print('Time\tBatt.\tDist.')
24     print('-' * 30)
25 
26     # and run the simulation
27     env.run(until = SIM_TIME)

原理:我们指定模拟的参数:最多10小时,只模拟一辆车。
首先,创建环境和充电站:

 1     @staticmethod
 2     def generateRechargeStations(simTime):
 3         '''
 4             A static method to create gas stations along
 5             the route. Gas stations are located every
 6             80 - 140 miles
 7 
 8             @param simTime -- time of the simulation
 9         '''
10         # we assume an average speed of 35MPH to calculate
11         # a maximum distance that might be covered during
12         # the simulation timespan
13         #假设速度为35MPH,计算模拟过程 中,最多开多远
14         maxDistance = simTime / 60 * 35 * 2
15 
16         # generate the recharge stations 生成充电 站
17         distCovered = 0
18         rechargeStations = [RechargeStation(env, 0)]
19 
20         while(distCovered < maxDistance):
21             nextStation = np.random.randint(80, 140)
22 
23             distCovered += nextStation
24             rechargeStations.append(
25                 RechargeStation(env, distCovered))
26         
27         return rechargeStations

.generateRechargeStations(...)方法设置模拟的时间,并在路线上随机放置充电站。这个方法假设均速是35mph,计算模拟时间内最大的行驶距离。充电站之间的距离在80英里到140英里之间。
在这个模拟中,我们加入司机的概念。司机经过充电站时,如果无法保证能到下一个充电站,就会停下来。司机也有权力中断充电过程,直接开出。
drive(...)方法引入一个新概念——中断:

 1     def drive(self, car, timeToFullRecharge):
 2         '''
 3             Method to control how long the recharging
 4             is allow to last
 5 
 6             @param car -- pointer to the car
 7             @timeToFullRecharge -- minutes needed to full
 8                                    recharge
 9         '''
10         # decide how long to allow the car to recharge
11         #允许充电站充多久
12         interruptTime = np.random.randint(50, 120)
13 
14         # if more than the time needed to full recharge
15         # wait till the full recharge, otherwise interrupt
16         # the recharge process earlier
17         #如果足够充满点,就等到充满,否则提前中断
18         yield self.env.timeout(int(np.min(
19             [interruptTime, timeToFullRecharge])))
20 
21         if interruptTime < timeToFullRecharge:
22             car.action.interrupt()

车停靠充电站后,司机可以中断充电,直接开走。这是由.drive(...)方法随机决定的。这个方法以Car对象作为第一个参数,充满电的时间作为第二个参数。如果生成的随机数大于充满需要的时间,那就等到充满。否则,充电过程就停止,继续旅途。

在SimPy中中断进程很直接——调用.interrupt()方法即可。这会抛出一个异常。
模拟的大部分代码和处理都在Car类中。我们先定义car参数。在两种容量的电池中选择,70kWh或85kWh。电池的起始电量在80%到100%之间。.AVG_SPEED决定了能行驶多远,范围在36.4mph到49.2mph之间。消耗是以每英里kWh描述的;每100英里,34kWh到38kWh,换算下来大约是100mpg-e到89mpg-e(miles per gallon equivalent,每加仑等价英里数)。旅途之初,我们在位置0。
模拟从driving(...)方法内的过程开始:

 1     def driving(self):
 2         # updates every 15 minutes 每15分钟更新
 3         interval = 15
 4 
 5         # assuming constant speed -- how far the car travels
 6         # in each 15 minutes 假设匀速
 7         distanceTraveled = self.AVG_SPEED / 60 * interval
 8 
 9         # how much battery used to travel that distance共耗多少电量
10         batteryUsed = distanceTraveled * self.AVG_ECONOMY

首先,我们看看电量能支持多远;如果电量不足0.0%,我们中断模拟,并给一个提示:

 1         while True:
 2             # update the location of the car 更新车的位置
 3             self.LOCATION += distanceTraveled
 4 
 5             # how much battery power left 剩余 电量
 6             batteryLeft = self.BATTERY_LEVEL \
 7                 * self.BATTERY_CAPACITY - batteryUsed
 8             
 9             # update the level of the battery 更新电池电量 格数
10             self.BATTERY_LEVEL = batteryLeft \
11                 / self.BATTERY_CAPACITY
12             
13             # if we run out of power -- stop 耗尽电量---终止
14             if self.BATTERY_LEVEL <= 0.0:
15                 print()
16                 print('!~' * 15)
17                 print('RUN OUT OF JUICE...')
18                 print('!~' * 15)
19                 print()
20                 break

驾驶过程中,我们要看最近的两个充电站,检查最近的距离:

 1             # along the way -- check the distance to 在路上,查看两个最近的充电站
 2             # the next two recharge stations
 3             nearestRechargeStations = \
 4                 [gs for gs in self.rechargeStations
 5                     if gs.LOCATION > self.LOCATION][0:2]
 6 
 7             distanceToNearest = [rs.LOCATION \
 8                 - self.LOCATION
 9                 for rs in nearestRechargeStations]
10 
11             # are we currently passing a recharging station?正经过一个充电站?
12             passingRechargeStation = self.LOCATION \
13                 + distanceTraveled > \
14                     nearestRechargeStations[0].LOCATION
15 
16             # will we get to the next one on the charge left?剩余电量能支撑到下一个充电站吗?
17             willGetToNextOne = self.check(
18                 batteryLeft,
19                 nearestRechargeStations[-1].LOCATION)

如果正经过一个充电站(passingRechargeStation),我们可以选择停车,也可以选择看看剩余电量能不能支撑到下个充电站(willGetToNextOne)。如果不太可能,我们就停下来充电:

 1             if passingRechargeStation \
 2                 and not willGetToNextOne:
 3 
 4                 # the charging can be interrupted by the
 5                 # driver 充电可由司机中断
 6                 try:
 7                     # how long will it take to fully recharge?充满要多久?
 8                     timeToFullRecharge = \
 9                         (1 - self.BATTERY_LEVEL) \
10                         / nearestRechargeStations[0] \
11                           .RECHARGE_SPEED
12 
13                     # start charging开始充电
14                     charging = self.env.process(
15                         self.charging(timeToFullRecharge,
16                             nearestRechargeStations[0] \
17                             .RECHARGE_SPEED))
18 
19                     # and see if the driver will drive off
20                     # earlier than the car is fully recharged 司机是否提前开走
21                     yield self.env.process(self.driver \
22                         .drive(self, timeToFullRecharge))
23 
24                 # if the he/she does -- interrupt charging 如果提前了,-中断充电
25                 except simpy.Interrupt:
26 
27                     print('Charging interrupted at {0}' \
28                         .format(int(self.env.now)))
29                     print('-' * 30)
30 
31                     charging.interrupt()
32 
33             # update the progress of the car along the way
34             toPrint = '{time}\t{level:2.2f}\t{loc:4.1f}'
35             print(toPrint.format(time=int(self.env.now),
36                 level=self.BATTERY_LEVEL, loc=self.LOCATION))
37             
38             # and wait for the next update 等待下一次更新
39             yield self.env.timeout(interval)

注意我们是如何用try-except包裹代码的;try的部分,我们先决定timeToFullRecharge,并开始充电。同时调用Driver对象(具体是drive(...)方法),开始决定这次充电命运的过程——中不中断?
假设不中断,charging(...)方法中try部分的代码会全部执行。注意我们充电是每秒增量式地更新电量,以应对中断:

 1     def charging(self, timeToFullRecharge, rechargeSpeed):
 2         '''
 3             Method to recharge the car
 4         '''
 5         # we are starting the recharge process 开始充电进程
 6         try:
 7             # let's print out to the screen when this
 8             # happens
 9             print('-' * 30)
10             print('Charging at {0}'.format(self.env.now))
11 
12             # and keep charging (every minute)
13             for _ in range(int(timeToFullRecharge)):
14                 self.BATTERY_LEVEL += rechargeSpeed
15                 yield self.env.timeout(1)
16 
17             # if the recharge process is not interrupted
18             print('Fully charged...')
19             print('-' * 30)
20 
21         # else -- just finish then
22         except simpy.Interrupt:
23             pass

如果过程被司机中断了,driving(...)方法中的异常会传到charging(...)。然后不做任何处理,再返回driving(...)的执行。
执行代码后,你会看到这样的输出:
《数据分析实战-托马兹.卓巴斯》读书笔记第11章--代理人基的模拟(加油站加油、电动车耗尽电量、狼-羊掠食)_第4张图片

如果中断充电,会有一条消息:
《数据分析实战-托马兹.卓巴斯》读书笔记第11章--代理人基的模拟(加油站加油、电动车耗尽电量、狼-羊掠食)_第5张图片

如果模拟中,车的电量耗尽了,你会看到这样的输出:
《数据分析实战-托马兹.卓巴斯》读书笔记第11章--代理人基的模拟(加油站加油、电动车耗尽电量、狼-羊掠食)_第6张图片

11.4判断羊群面对群狼时是否有团灭的风险

一个著名的代理人基模型就是羊-狼捕食的例子。
模型模拟两群动物:一块区域上共同生活的羊和狼。羊群食草补充能量。狼群捕食羊群得到能量。在区域内移动消耗能量。一旦哪个动物能量低于0,就死了。
本技巧中,我们将构建一个300×300的区域(网格)并(初始)填充6000只羊和200只狼。我们也引入继承的概念:我们将创建一个通用的Animal类,然后派生出Sheep类和Wolf类。背后的思想很简单:动物是有共性的(都要在区域上移动),我们就不用在两个地方重复同样的代码了。
准备:需要装好SimPy和NumPy。
代码实现:

本技巧的代码很长,但跟着逻辑走应该很清楚(sim_sheepWolvesPredation.py文件):

 1 import numpy as np
 2 import simpy
 3 import collections as col
 4 
 5 if __name__ == '__main__':
 6     # create the environment 创建环境
 7     env = simpy.Environment()
 8 
 9     # create the plane 创建区域
10     plane = Plane(env, LAND, GRASS_COVERAGE,
11         INITIAL_SHEEP, INITIAL_WOLF)
12 
13     # print the header
14     print('\tSheep\t\tDied\t\tWolves\t\tDied\t')
15     print('T\tLive\tBorn\tEnergy\tEaten\tLive\tBorn\tEnergy')
16 
17     # and run the simulation 运行模拟
18     env.run(until = SIM_TIME)

原理解释:和之前一样,我们先创建.Environment()。
然后创建Plane对象,我们的神奇动物们要在上面散步(下面的代码经过了缩略):

 1 class Plane(object):
 2     '''
 3         Plane class
 4     '''
 5     def __init__(self, env, bounds, grassCoverage,
 6         sheep, wolves):
 7         '''
 8             Default constructor
 9         '''        
10         # pointer to the environment
11         self.env = env
12 
13         # bounds of the plane
14         self.bounds = bounds
15 
16         # grass
17         self.grassCoverage = grassCoverage
18         self.grass = [
19             [0  for _ in range(self.bounds[0])]
20                 for _ in range(self.bounds[1])
21         ]
22 
23         # we keep track of eaten grass
24         self.grassEatenIndices = col.defaultdict(list)
25 
26         # create the animals
27         self.noOfSheep  = sheep
28         self.noOfWolves = wolves
29 
30         self.sheep = []
31         self.wolves = []
32 
33         # keep track of counts
34         self.counts = {
35             'sheep': {
36                 'count': 0,
37                 'died': {
38                     'energy': 0,
39                     'eaten': 0,
40                     'age': 0,
41                 },
42                 'born': 0
43             },
44             'wolves': {
45                 'count': 0,
46                 'died': {
47                     'energy': 0,
48                     'age': 0,
49                 },
50                 'born': 0
51             }
52         }
53 
54         # generate the grass and animals 生成草和动物
55         self.generateGrass()
56         self.generateSheep()
57         self.generateWolves()
58 
59         # and start monitoring and simulation processes 开始监控和模拟过程
60         self.monitor = self.env.process(
61             self.monitorPopulation())
62         self.action = self.env.process(self.run())

Plane类生成区域并先种草;我们使用.generateGrass()方法来实现绿化:

 1     def generateGrass(self):
 2         '''
 3             Method to populate the plane with grass
 4         '''
 5         # number of tiles on the plane 区域内单位面积的块数
 6         totalSize = self.bounds[0] * self.bounds[1]
 7 
 8         # how many of them will have grass当中有多少要种草
 9         totalGrass = int(totalSize * self.grassCoverage)
10 
11         # randomly spread the grass on the plane 在区域上随机种草
12         grassIndices = sorted(
13             choice(totalSize, totalGrass, replace=False))
14 
15         for index in grassIndices:
16             row = int(index / self.bounds[0])
17             col = index - (self.bounds[1] * row)
18 
19             self.grass[row][col] = 1

这个方法,基于模拟的参数,检查区域上有多少单位块要种草。然后使用NumPy的.random.choice(...)方法随机选择单位块。最后把草种上去。
下一步是生成动物:

 1     def generateSheep(self):
 2         '''
 3             Method to populate the plane with sheep
 4         '''
 5         # place the sheep randomly on the plane 随机放一些羊
 6         for _ in range(self.noOfSheep):
 7             pos_x = rint(0, LAND[0])
 8             pos_y = rint(0, LAND[1])
 9             energy = rint(*ENERGY_AT_BIRTH)
10 
11             self.sheep.append(
12                 Sheep(
13                     self.counts['sheep']['count'],
14                     self.env, energy, [pos_x, pos_y], self)
15                 )
16             self.counts['sheep']['count'] += 1

我们先决定区域上Sheep的主要属性:放哪里,初始有多少能量。决定了之后,简单附加到self.sheep列表就可以。
在Python的循环里,如果你用不到i这种循环次数;那就直接改用_。
生成狼群的方式类似:

 1     def generateWolves(self):
 2         '''
 3             Method to populate the plane with wolves
 4         '''
 5         # place the wolves randomly on the plane 随机放一些狼
 6         for _ in range(self.noOfWolves):
 7             pos_x = rint(0, LAND[0])
 8             pos_y = rint(0, LAND[1])
 9             energy = rint(*ENERGY_AT_BIRTH)
10 
11             self.wolves.append(
12                 Wolf(
13                     self.counts['wolves']['count'],
14                     self.env, energy, [pos_x, pos_y], self)
15                 )
16 
17             self.counts['wolves']['count'] += 1

Sheep类和Wolf类都派生自Animal类;毕竟都是动物:

 1 class Animal(object):
 2     '''
 3         Animal class
 4     '''
 5     def __init__(self, i, env, energy, pos, plane):
 6         '''
 7             Default constructor
 8         '''
 9         # attributes属性
10         self.energy = energy
11         self.pos = pos          # current position
12 
13         # is the animal still alive动物是否还活着
14         self.alive = True
15         self.causeOfDeath = None
16 
17         # when did the animal ate the last 上一顿是啥时候
18         self.lastTimeEaten = 0
19 
20         # range of movements移动范围
21         self.movements = [i for i in range(-50,51)]
22 
23         # pointer to environment and the plane 指向环境和区域的指针
24         self.env = env
25         self.plane = plane
26         self.id = i

Animal类控制所有主要的(Sheep类和Wolf类共有的)性质:移动move(...)(及其位置),死亡die(...),以及检查死因——你可以查看动物是否存活isAlive(...)以及还有多少能量。显然,这些性质是所有动物共有的。Animal类还存储了所有动物都有的属性:位置、能量以及是否活着。
为了移动(move(...))动物,我们随机选择水平轴和垂直轴,并沿着这个方向移动:

 1     def move(self):
 2         '''
 3             Changing the animal's position
 4         '''
 5         # determining the horizontal and vertical moves决定水平轴和垂直轴
 6         h = choice(self.movements)
 7         v = choice(self.movements)
 8 
 9         # adjusting the position调整位置
10         self.pos[0] += h
11         self.pos[1] += v
12 
13         # making sure we do not go outside the predefined land确保没有越界
14         self.pos[0] = np.min(
15             [np.max([0, self.pos[0] - 1]), LAND[0] - 1]
16         )
17 
18         self.pos[1] = np.min(
19             [np.max([0, self.pos[1] - 1]), LAND[1] - 1]
20         )
21 
22         # and subtracting the energy due to move减去移动消耗的能量
23         self.energy -= (h+v) / 4

这个方法确保没有越界,也减去了移动消耗的能量。
Sheep类和Wolf类的不同点在于它们的食物——羊吃草(eatGrass(...))而狼吃羊(eatSheep(...)):

 1     def eatGrass(self):
 2         '''
 3             Sheep eat grass
 4         '''
 5         if self.plane.hasGrass(self.pos):
 6             # get the energy from grass 获得能量
 7             self.energy += ENERGY_FROM_GRASS
 8             self.lastTimeEaten = self.env.now
 9 
10             # and flag that the grass has been eaten标记草已被吃
11             self.plane.grassEaten(self.pos)
12 
13         if self.energy > 200:
14             self.energy = 200

吃草的时候,我们先检查当前位置有没有。有的话,能量增加ENERGY_FROM_GRASS变量指定的数值。我们规定羊的能量不能超过200;毕竟不可能无限增长。我们会更新最近一次进食时间。这个时间会用来决定动物生存的概率;这里的想法就是,长时间不进食,死亡的可能性就上升了。
注意从Animal类派生Sheep(或Wolf)时,我们仍然使用self(比如self.energy),尽管逻辑是在父类(Animal类)中实现的。
而eatSheep(...)方法先获取当前位置所有的羊,并决定狼要吃多少只:

 1     def eatSheep(self):
 2         '''
 3             Wolves eat sheep
 4         '''
 5         # get the sheep at the particular position on the
 6         # plane获取当前位置所有的羊
 7         sheep = self.plane.getSheep(self.pos)
 8         
 9         # decide how many will be eaten决定狼要吃多少只
10         howMany = np.random.randint(1,
11             np.max([len(sheep), 2]))
12 
13         # and feast 盛宴
14         for i, s in enumerate(sheep):
15             # we're checking if the sheep is still alive
16             # as the removal of sheep that died happens later
17             if s.isAlive() and i < howMany:
18                 self.energy += s.getEnergy() / 20
19                 s.die('eaten')
20                 
21         if self.energy > 200:
22             self.energy = 200
23 
24         # update the time of the last meal更新最近一次进食时间
25         self.lastTimeEaten = self.env.now

遍历Sheep对象,看羊是否还活着,活着的话,吃掉。狼获得了对应的能量,并限制在200个单位以内。
回到Plane对象,生成所有的动物后,我们开始模拟。
第一个过程是monitorPopulation(...):

 1     def monitorPopulation(self):
 2         '''
 3             Process to monitor the population
 4         '''
 5         # the process checks for animals that run out of
 6         # energy and removes them from simulation检查并移除所有能量耗尽的动物
 7         while True:
 8             for s in self.sheep:
 9                 if s.energy < 0:
10                     s.die('energy')
11 
12             for w in self.wolves:
13                 if w.energy < 0:
14                     w.die('energy')
15             
16             # clean up method 清理
17             self.removeAnimalsThatDied()
18                 
19             yield self.env.timeout(1)

这个方法遍历所有动物(包括Sheep和Wolf),检查能量水平;低于0就死了。当所有动物都标记过后,调用removeAnimalsThatDied(...)方法:

 1     def removeAnimalsThatDied(self):
 2         '''
 3             Clean up method for removing dead animals 清理死亡的动物
 4         '''
 5         # get all animals that are still alive and those
 6         # that died 列出活着的动物与死去的动物
 7         sheepDied = []
 8         wolvesDied = []
 9 
10         sheepAlive = []
11         wolvesAlive = []
12 
13         for s in self.sheep:
14             if s.isAlive():
15                 sheepAlive.append(s)
16             else:
17                 sheepDied.append(s)
18 
19         for w in self.wolves:
20             if w.isAlive():
21                 wolvesAlive.append(w)
22             else:
23                 wolvesDied.append(w)
24 
25         # keep only those that are still alive只保留还活着的
26         self.sheep = sheepAlive
27         self.wolves = wolvesAlive
28         
29         # while for those that died -- update why they died
30         cod = {'energy': 0, 'eaten': 0, 'age': 0}
31         for s in sheepDied:
32             cod[s.getCauseOfDeath()] += 1
33 
34         for cause in cod:
35             self.counts['sheep']['died'][cause] = cod[cause]
36 
37         cod = {'energy': 0, 'age': 0}
38         for w in wolvesDied:
39             cod[w.getCauseOfDeath()] += 1
40 
41         for cause in cod:
42             self.counts['wolves']['died'][cause] = cod[cause]
43  
44         # and finally -- release the memory by deleting the
45         # animal objects 释放内存
46         for s in sheepDied:
47             del s
48 
49         for w in wolvesDied:
50             del w

该方法遍历所有动物,区分出是否还活着;活着的参加下一轮循环。最后删除对象是为了释放占据的内存。
另一个过程是主模拟循环,run(...)方法。这个方法控制模拟的流程:

 1    def run(self):
 2         '''
 3             Main loop of the simulation
 4         '''
 5         while True:
 6             # first, move the animals on the plane移动区域内的动物
 7             self.updatePositions()
 8 
 9             # and let them eat 进食
10             self.eat()
11 
12             # then let's see how many of them will reproduce繁殖
13             self.reproduceAnimals()
14 
15             # and keep track of the grass regrowth记录草的生长
16             self.env.process(self.regrowGrass())
17 
18             # finally, print the telemetry to the screen
19             toPrint = '{tm}\t{sheep_alive}\t{sheep_born}'
20             toPrint += '\t{sheep_died_energy}'
21             toPrint += '\t{sheep_died_eaten}'
22             toPrint += '\t{wolves_alive}\t{wolves_born}'
23             toPrint += '\t{wolves_died_energy}'
24 
25 
26             print(toPrint.format(
27                 tm=int(self.env.now),
28                 sheep_alive=int(len(self.sheep)),
29                 sheep_born=self.counts['sheep']['born'],
30                 sheep_died_energy= \
31                    self.counts['sheep']['died']['energy'],
32                 sheep_died_eaten= \
33                     self.counts['sheep']['died']['eaten'],
34                 sheep_died_age= \
35                     self.counts['sheep']['died']['age'],
36                 wolves_alive=int(len(self.wolves)),
37                 wolves_born=self.counts['wolves']['born'],
38                 wolves_died_energy= \
39                     self.counts['wolves']['died']['energy'],
40                 wolves_died_age= \
41                     self.counts['wolves']['died']['age'])
42             )
43 
44             # and wait for another iteration等下一个轮回
45             yield self.env.timeout(1)

 


模拟的每一次循环,所有动物都可以在区域内随意走动(一步)。updatePositions(...)方法遍历所有动物,调用move(...)方法:

1     def updatePositions(self):
2         '''
3             Method to update the positions of animals
4         '''
5         for s in self.sheep:
6             s.move()
7 
8         for w in self.wolves:

 

 
下一步是进食。类似地,这个方法遍历所有动物,对羊调用eatGrass(...)方法,对狼调用eatSheep(...)方法:

1     def eat(self):
2         '''
3             Method to feed animals
4         '''
5         for s in self.sheep:
6             s.eatGrass()
7 
8         for w in self.wolves:
9             w.eatSheep()

吃饱之后,模拟会进行繁殖(reproduceAnimals(...)):

 1     def reproduceAnimals(self):
 2         '''
 3             Method to reproduce animals
 4         '''
 5         # counting the number of births
 6         births = {'sheep': 0, 'wolves': 0}
 7 
 8         # reproduce sheep
 9         for s in self.sheep:
10             # determine if the animal will reproduce 是否愿意繁殖
11             willReproduce = np.random.rand() < \
12                 (SHEEP_REPRODUCE * 3 / \
13                     (self.env.now - s.lastTimeEaten + 1))
14 
15             # if will reproduce and is still alive --
16             # give birth at the same position as the mother
17             #如果愿意且活着,原地生一个
18             if willReproduce and s.isAlive():
19                 energy = rint(*ENERGY_AT_BIRTH)
20                 self.sheep.append(
21                     Sheep(self.counts['sheep']['count'],
22                         self.env, energy,
23                         s.getPosition(), self))
24 
25                 # increase the overall count of sheep 增加羊的数量
26                 self.counts['sheep']['count'] += 1
27 
28                 # and the birth counter
29                 births['sheep'] += 1
30 
31         # reproduce wolves
32         for w in self.wolves:
33             # determine if the animal will reproduce 是否愿意繁殖
34             willReproduce = np.random.rand() < \
35                 ( WOLF_REPRODUCE / \
36                     (self.env.now - w.lastTimeEaten  + 1))
37             # if will reproduce and is still alive --
38             # give birth at the same position as the mother
39              #如果愿意且活着,原地生一个
40             if willReproduce and w.isAlive():
41                 energy = rint(*ENERGY_AT_BIRTH)
42                 self.wolves.append(
43                     Wolf(self.counts['wolves']['count'],
44                         self.env, energy,
45                         w.getPosition(), self))
46                 
47                 # increase the overall count of wolves增加狼的数量
48                 self.counts['wolves']['count'] += 1
49 
50                 # and the birth counter
51                 births['wolves'] += 1
52                         # update the counts variable
53         for animal in births:
54             self.counts[animal]['born'] = births[animal]

这方法遍历所有动物,并随机决定要不要生。繁殖后代的概率依赖于最近一次进食的时间:越久,可能性越低。如果愿意繁殖且活着,一个新的Sheep或Wolf会在原来的位置创建。
增加数量后,我们重新种草:

 1     def regrowGrass(self):
 2         '''
 3             Regrow the grass
 4         '''
 5         # time to regrow the grass长草的时间
 6         regrowTime = 2
 7         yield self.env.timeout(regrowTime)
 8         
 9         # then we make the grass available at the position标记这个位置有草
10         for pos in self.grassEatenIndices[
11             self.env.now - regrowTime]:
12             self.grass[pos[0]][pos[1]] = 1

regrowGrass(...)方法遍历吃过的所有位置,并重新长草。Sheep吃草后,.grass变量设为0,表示草被吃掉了,这个位置也加到.grassEatenIndices defaultdict对象里,这个对象记录每个位置草被吃掉的时间。这样,你可以调整regrowTime,看看对羊群数量有什么影响。
执行代码后,你会看到类似的输出:
《数据分析实战-托马兹.卓巴斯》读书笔记第11章--代理人基的模拟(加油站加油、电动车耗尽电量、狼-羊掠食)_第7张图片
T是模拟的时间,Live是存活的动物数目,Born是出生数,Died记录多少动物已死亡——也许是由于能量不足,(就Sheep而言)也许是由于被吃了。

 

第11章完。整书完。

略微休息,计划读下一本书《python数据分析(第2版)-阿曼多.凡丹戈》。

该书是一本介绍如何用Python进行数据分析的学习指南。全书共12章,从Python程序库入门、NumPy数组和Pandas入门开始,陆续介绍了数据的检索、数据加工与存储、数据可视化等内容。同时,本书还介绍了信号处理与时间序列、应用数据库、分析文本数据与社交媒体、预测性分析与机器学习、Python生态系统的外部环境和云计算、性能优化及分析、并发性等内容。在本书的最后,还采用3个附录的形式为读者补充了一些重要概念、常用函数以及在线资源等重要内容。

 

python数据分析个人学习读书笔记-目录索引

 

随书源码官方下载:
http://www.hzcourse.com/web/refbook/detail/7821/92

你可能感兴趣的:(《数据分析实战-托马兹.卓巴斯》读书笔记第11章--代理人基的模拟(加油站加油、电动车耗尽电量、狼-羊掠食))