生存分析

文件格式


生存分析_第1张图片

生存状态(布尔值):0-Alive;1-Dead

group:根据fpkm值将其分为高表达(1)和低表达(0)

library(survival)

library(rJava)

library(xlsxjars)

library(xlsx)

Baseline<-read.xlsx('./BRCA/1.xlsx',sheetIndex = 25,header = T)

Lisurv<-Surv(time = Baseline$Overall.Survival..Months.,event = Baseline$Overall.Survival.Status)

Lifit<-survfit(Lisurv~Baseline$group)

plot(Lifit,conf.int = 'none',col = c('red','blue'),lwd = 2,main="BRCA_TMOD1",xlab = "Survival time(months)",ylab = "Overall survival(Proportion %)")

axis(1,at=seq(0,300,25))

legend("topright",c("low","high"), lty = c(1, 1),lwd=c(2,2),col = c("red","blue"))

生存分析_第2张图片

####p值

a<-survdiff(Lisurv~Baseline$group)


生存分析_第3张图片

p<- 1-pchisq(a$chisq,length(a$n)-1)


temp <- locator(1)

text(temp,'p=0.0008')




2

library(survival)

library(survminer)

data("lung")

fit <- survfit(Surv(time, status) ~ sex, data = lung)

ggsurvplot(fit,pval = TRUE,conf.int = T,conf.int.style="ribbon",conf.int.alpha=0.1, palette =c("blue","red"),legend.title="",legend=c(0.7,0.9),legend.labs=c("Male","Female"),surv.median.line = "hv",risk.table = TRUE,tables.height = 0.2,tables.theme = theme_cleantable(),ggtheme = theme_bw())



生存分析_第4张图片

你可能感兴趣的:(生存分析)