[源码分析] 从FlatMap用法到Flink的内部实现

[源码分析] 从FlatMap用法到Flink的内部实现

0x00 摘要

本文将从FlatMap概念和如何使用开始入手,深入到Flink是如何实现FlatMap。希望能让大家对这个概念有更深入的理解。

0x01 Map vs FlatMap

首先我们先从概念入手。

自从响应式编程慢慢壮大以来,这两个单词现在越来越被大家熟悉了。前端能见到它们的身影,后台也能见到;安卓里面有,iOS也有。很多兄弟刚遇到它们时候是懵圈的,搞不清楚之间的区别。下面我就给大家简单讲解下。

map

它把数组流中的每一个值,使用所提供的函数执行一遍,一一对应。得到与元素个数相同的数组流。然后返回这个新数据流。

flatMap

flat是扁平的意思。所以这个操作是:先映射(map),再拍扁(join)。

flatMap输入可能是多个子数组流。所以flatMap先针对 每个子数组流的每个元素进行映射操作。然后进行扁平化处理,最后汇集所有进行扁平化处理的结果集形成一个新的列表(扁平化简而言之就是去除所有的修饰)。

flatMap与map另外一个不一样的地方就是传入的函数在处理完后返回值必须是List。

实例

比如拿到一个文本文件之后,我们是按行读取,按行处理。如果要对每一行的单词数进行计数,那么应该选择Map方法,如果是统计词频,就应该选择flatMap方法。

如果还不清楚,可以看看下面这个例子:

梁山新进一批好马,准备给每个马军头领配置一批。于是得到函数以及头领名单如下:

函数 = ( 头领 => 头领 + 好马 )
五虎将 = List(关胜、林冲、秦明、呼延灼、董平 )
八骠骑 = List(花荣、徐宁、杨志、索超、张清、朱仝、史进、穆弘 )

// Map函数的例子
利用map函数,我们可以得到 五虎将马军

五虎将马军 = 五虎将.map( 头领 => 头领 + 好马 )
结果是 List( 关胜 + 马、林冲 + 马、秦明 + 马、呼延灼 + 马、董平 + 马 )

// flatMap函数的例子
但是为了得到统一的马军,则可以用flatMap:

马军头领 = List(五虎将,八骠骑)
马军 = 马军头领.flatMap( 头领 => 头领 + 好马 ) 

结果就是:List( 关胜 + 马、林冲 + 马、秦明 + 马、呼延灼 + 马、董平 + 马,花荣 + 马、徐宁 + 马、杨志 + 马、索超 + 马、张清 + 马、朱仝 + 马、史进 + 马、穆弘 + 马 )

现在大家应该清楚了吧。接下来看看几个FlatMap的实例。

Scala语言的实现

Scala本身对于List类型就有map和flatMap操作。举例如下:

val names = List("Alice","James","Apple")
val strings = names.map(x => x.toUpperCase)
println(strings)
// 输出 List(ALICE, JAMES, APPLE)

val chars = names.flatMap(x=> x.toUpperCase())
println(chars)
// 输出 List(A, L, I, C, E, J, A, M, E, S, A, P, P, L, E)

Flink的例子

以上是scala语言层面的实现。下面我们看看Flink框架是如何使用FlatMap的。

网上常见的一个Flink应用的例子:

//加载数据源
val source = env.fromElements("china is the best country","beijing is the capital of china")

//转化处理数据
val ds = source.flatMap(_.split(" ")).map((_,1)).groupBy(0).sum(1)

Flink源码中的例子

case class WordWithCount(word: String, count: Long)

val text = env.socketTextStream(host, port, '\n')

val windowCounts = text.flatMap { w => w.split("\\s") }
  .map { w => WordWithCount(w, 1) }
  .keyBy("word")
  .timeWindow(Time.seconds(5))
  .sum("count")

windowCounts.print()

上面提到的都是简单的使用,如果有复杂需求,在Flink中,我们可以通过继承FlatMapFunction和RichFlatMapFunction来自定义算子。

函数类FlatMapFunction

对于不涉及到状态的使用,可以直接继承 FlatMapFunction,其定义如下:

@Public
@FunctionalInterface
public interface FlatMapFunction extends Function, Serializable {
	void flatMap(T value, Collector out) throws Exception;
}

如何自定义算子呢,这个可以直接看看Flink中的官方例子

// FlatMapFunction that tokenizes a String by whitespace characters and emits all String tokens.
public class Tokenizer implements FlatMapFunction {
  @Override
  public void flatMap(String value, Collector out) {
    for (String token : value.split("\\W")) {
      out.collect(token);
    }
  }
}

// [...]
DataSet textLines = // [...]
DataSet words = textLines.flatMap(new Tokenizer());

Rich函数类RichFlatMapFunction

对于涉及到状态的情况,用户可以使用继承 RichFlatMapFunction 类的方式来实现UDF。

RichFlatMapFunction属于Flink的Rich函数类。从名称上来看,这种函数类在普通的函数类上增加了Rich前缀,比如RichMapFunctionRichFlatMapFunctionRichReduceFunction等等。比起普通的函数类,Rich函数类增加了:

  • open()方法:Flink在算子调用前会执行这个方法,可以用来进行一些初始化工作。
  • close()方法:Flink在算子最后一次调用结束后执行这个方法,可以用来释放一些资源。
  • getRuntimeContext方法:获取运行时上下文。每个并行的算子子任务都有一个运行时上下文,上下文记录了这个算子运行过程中的一些信息,包括算子当前的并行度、算子子任务序号、广播数据、累加器、监控数据。最重要的是,我们可以从上下文里获取状态数据

FlatMap对应的RichFlatMapFunction如下:

@Public
public abstract class RichFlatMapFunction extends AbstractRichFunction implements FlatMapFunction {
	@Override
	public abstract void flatMap(IN value, Collector out) throws Exception;
}

其基类 AbstractRichFunction 如下,可以看到主要是和运行时上下文建立了联系,并且有初始化和退出操作

@Public
public abstract class AbstractRichFunction implements RichFunction, Serializable {
  
	private transient RuntimeContext runtimeContext;

	@Override
	public void setRuntimeContext(RuntimeContext t) {
		this.runtimeContext = t;
	}

	@Override
	public RuntimeContext getRuntimeContext() {
			return this.runtimeContext;
	}

	@Override
	public IterationRuntimeContext getIterationRuntimeContext() {
    if (this.runtimeContext instanceof IterationRuntimeContext) {
			return (IterationRuntimeContext) this.runtimeContext;
		} 
	}

	@Override
	public void open(Configuration parameters) throws Exception {}

	@Override
	public void close() throws Exception {}
}

如何最好的使用? 当然还是官方文档和例子最靠谱。

因为涉及到状态,所以如果使用,你必须创建一个 StateDescriptor,才能得到对应的状态句柄。 这保存了状态名称(你可以创建多个状态,并且它们必须具有唯一的名称以便可以引用它们),状态所持有值的类型,并且可能包含用户指定的函数,例如ReduceFunction。 根据不同的状态类型,可以创建ValueStateDescriptorListStateDescriptorReducingStateDescriptorFoldingStateDescriptorMapStateDescriptor

状态通过 RuntimeContext 进行访问,因此只能在 rich functions 中使用。 但是我们也会看到一个例子。RichFunctionRuntimeContext 提供如下方法:

  • ValueState getState(ValueStateDescriptor)
  • ReducingState getReducingState(ReducingStateDescriptor)
  • ListState getListState(ListStateDescriptor)
  • AggregatingState getAggregatingState(AggregatingStateDescriptor)
  • FoldingState getFoldingState(FoldingStateDescriptor)
  • MapState getMapState(MapStateDescriptor)

下面是一个 FlatMapFunction 的例子,展示了如何将这些部分组合起来:

class CountWindowAverage extends RichFlatMapFunction[(Long, Long), (Long, Long)] {

  private var sum: ValueState[(Long, Long)] = _

  override def flatMap(input: (Long, Long), out: Collector[(Long, Long)]): Unit = {

    // access the state value
    val tmpCurrentSum = sum.value

    // If it hasn't been used before, it will be null
    val currentSum = if (tmpCurrentSum != null) {
      tmpCurrentSum
    } else {
      (0L, 0L)
    }

    // update the count
    val newSum = (currentSum._1 + 1, currentSum._2 + input._2)

    // update the state
    sum.update(newSum)

    // if the count reaches 2, emit the average and clear the state
    if (newSum._1 >= 2) {
      out.collect((input._1, newSum._2 / newSum._1))
      sum.clear()
    }
  }

  override def open(parameters: Configuration): Unit = {
    sum = getRuntimeContext.getState(
      new ValueStateDescriptor[(Long, Long)]("average", createTypeInformation[(Long, Long)])
    )
  }
}

object ExampleCountWindowAverage extends App {
  val env = StreamExecutionEnvironment.getExecutionEnvironment

  env.fromCollection(List(
    (1L, 3L),
    (1L, 5L),
    (1L, 7L),
    (1L, 4L),
    (1L, 2L)
  )).keyBy(_._1)
    .flatMap(new CountWindowAverage())
    .print()
  // the printed output will be (1,4) and (1,5)

  env.execute("ExampleManagedState")
}

这个例子实现了一个简单的计数窗口。 我们把元组的第一个元素当作 key(在示例中都 key 都是 “1”)。 该函数将出现的次数以及总和存储在 “ValueState” 中。 一旦出现次数达到 2,则将平均值发送到下游,并清除状态重新开始。 请注意,我们会为每个不同的 key(元组中第一个元素)保存一个单独的值。

0x03 从Flink源码入手看FlatMap实现

FlatMap从Flink编程模型角度讲属于一个算子,用来对数据流或者数据集进行转换。从框架角度说,FlatMap是怎么实现的呢? 或者说FlatMap是怎么从用户代码转换到Flink运行时呢 ?

1. DataSet

首先说说 DataSet相关这套系统中FlatMap的实现。

请注意,DataSteam对应的那套系统中,operator名字都是带着Stream的,比如StreamOperator。

DataSet

val ds = source.flatMap(_.split(" ")).map((_,1)).groupBy(0).sum(1) 这段代码调用的就是DataSet中的API。具体如下:

public abstract class DataSet {
  
	public  FlatMapOperator flatMap(FlatMapFunction flatMapper) {
    
		String callLocation = Utils.getCallLocationName();
    
		TypeInformation resultType = TypeExtractor.getFlatMapReturnTypes(flatMapper, getType(), callLocation, true);
		return new FlatMapOperator<>(this, resultType, clean(flatMapper), callLocation);
	}
}

FlatMapOperator

可以看出,flatMap @ DataSet 主要就是生成了一个FlatMapOperator,这个可以理解为是逻辑算子。其定义如下:

public class FlatMapOperator extends SingleInputUdfOperator> {

	protected final FlatMapFunction function;
	protected final String defaultName;

	public FlatMapOperator(DataSet input, TypeInformation resultType, FlatMapFunction function, String defaultName) {
		super(input, resultType);
		this.function = function;
		this.defaultName = defaultName;
	}

	@Override
	protected FlatMapFunction getFunction() {
		return function;
	}

  // 这个translateToDataFlow就是生成计划(Plan)的关键代码
	@Override
	protected FlatMapOperatorBase> translateToDataFlow(Operator input) {
		String name = getName() != null ? getName() : "FlatMap at " + defaultName;
		// create operator
		FlatMapOperatorBase> po = new FlatMapOperatorBase>(function,
			new UnaryOperatorInformation(getInputType(), getResultType()), name);
		// set input
		po.setInput(input);
		// set parallelism
		if (this.getParallelism() > 0) {
			// use specified parallelism
			po.setParallelism(this.getParallelism());
		} else {
			// if no parallelism has been specified, use parallelism of input operator to enable chaining
			po.setParallelism(input.getParallelism());
		}
		return po;
	}
}

FlatMapOperator的基类如下:

public abstract class SingleInputUdfOperator> extends SingleInputOperator implements UdfOperator {

}

// Base class for operations that operates on a single input data set.
public abstract class SingleInputOperator> extends Operator {
  	private final DataSet input;
}

生成计划

DataSet API所编写的批处理程序跟DataStream API所编写的流处理程序在生成作业图(JobGraph)之前的实现差别很大。流处理程序是生成流图(StreamGraph),而批处理程序是生成计划(Plan)并由优化器对其进行优化并生成优化后的计划(OptimizedPlan)。

计划(Plan)以数据流(dataflow)的形式来表示批处理程序,但它只是批处理程序最初的表示,在一个批处理程序生成作业图之前,计划还会被进行优化以产生更高效的方案。Plan不同于流图(StreamGraph),它以sink为入口,因为一个批处理程序可能存在若干个sink,所以Plan采用集合来存储它。另外Plan还封装了批处理作业的一些基本属性:jobId、jobName以及defaultParallelism等。

生成Plan的核心部件是算子翻译器(OperatorTranslation),createProgramPlan方法通过它来”翻译“出计划,核心代码如下

public class OperatorTranslation {
  
   // 接收每个需遍历的DataSink对象,然后将其转换成GenericDataSinkBase对象
   public Plan translateToPlan(List> sinks, String jobName) {
       List> planSinks = new ArrayList<>();
       //遍历sinks集合
       for (DataSink sink : sinks) {
            //将翻译生成的GenericDataSinkBase加入planSinks集合*,对每个sink进行”翻译“
            planSinks.add(translate(sink));
        }
       //以planSins集合构建Plan对象
       Plan p = new Plan(planSinks);
       p.setJobName(jobName);
       return p;
    }

	private  org.apache.flink.api.common.operators.Operator    translateSingleInputOperator(SingleInputOperator op) {
    //会调用到 FlatMapOperator 的 translateToDataFlow
	org.apache.flink.api.common.operators.Operator dataFlowOp = typedOp.translateToDataFlow(input);    
  }
  
}

FlatMapOperatorBase就是生成的plan中的一员。

public class FlatMapOperatorBase> extends SingleInputOperator {
	@Override
	protected List executeOnCollections(List input, RuntimeContext ctx, ExecutionConfig executionConfig) throws Exception {
		FlatMapFunction function = userFunction.getUserCodeObject();
		
		FunctionUtils.setFunctionRuntimeContext(function, ctx);
		FunctionUtils.openFunction(function, parameters);

		ArrayList result = new ArrayList(input.size());

		TypeSerializer inSerializer = getOperatorInfo().getInputType().createSerializer(executionConfig);
		TypeSerializer outSerializer = getOperatorInfo().getOutputType().createSerializer(executionConfig);

		CopyingListCollector resultCollector = new CopyingListCollector(result, outSerializer);

		for (IN element : input) {
			IN inCopy = inSerializer.copy(element);
			function.flatMap(inCopy, resultCollector);
		}

		FunctionUtils.closeFunction(function);

		return result;
	}
}

而最后优化时候,则FlatMapOperatorBase会被优化成FlatMapNode。

public class GraphCreatingVisitor implements Visitor> {
	public boolean preVisit(Operator c) {
    else if (c instanceof FlatMapOperatorBase) {
			n = new FlatMapNode((FlatMapOperatorBase) c);
		}
  }
}

自此,FlatMap就被组合到 DataSet的 OptimizedPlan 中。下一步Flink会依据OptimizedPlan来生成 JobGraph。

作业图(JobGraph)是唯一被Flink的数据流引擎所识别的表述作业的数据结构,也正是这一共同的抽象体现了流处理和批处理在运行时的统一。至此就完成了从用户业务代码到Flink运行系统的转化。

在运行状态下,如果上游有数据流入,则FlatMap这个算子就会发挥作用。

2. DataStream

对于DataStream,则是另外一套体系结构。首先我们找一个使用DataStream的例子看看。

//获取数据: 从socket中获取
val textDataStream = env.socketTextStream("127.0.0.1", 8888, '\n')
val tupDataStream = textDataStream.flatMap(_.split(" ")).map(WordWithCount(_,1))

//groupby: 按照指定的字段聚合
val windowDstram = tupDataStream.keyBy("word").timeWindow(Time.seconds(5),Time.seconds(1))
windowDstram.sum("count").print()

上面例子中,flatMap 调用的是DataStream中的API,具体如下:

public class DataStream {
  
	public  SingleOutputStreamOperator flatMap(FlatMapFunction flatMapper) {
    //clean函数用来移除FlatMapFunction类对象的外部类部分,这样就可以进行序列化
    //getType用来获取类对象的输出类型
		TypeInformation outType = TypeExtractor.getFlatMapReturnTypes(clean(flatMapper),
				getType(), Utils.getCallLocationName(), true);
		return flatMap(flatMapper, outType);
	}
  
  // 构建了一个StreamFlatMap的Operator
	public  SingleOutputStreamOperator flatMap(FlatMapFunction flatMapper, TypeInformation outputType) {
		return transform("Flat Map", outputType, new StreamFlatMap<>(clean(flatMapper)));
	}  
  
  // 依次调用下去
	@PublicEvolving
	public  SingleOutputStreamOperator transform(
			String operatorName,
			TypeInformation outTypeInfo,
			OneInputStreamOperator operator) {
		return doTransform(operatorName, outTypeInfo, SimpleOperatorFactory.of(operator));
	}
  
	protected  SingleOutputStreamOperator doTransform(
			String operatorName,
			TypeInformation outTypeInfo,
			StreamOperatorFactory operatorFactory) {
		// read the output type of the input Transform to coax out errors about MissingTypeInfo
		transformation.getOutputType();
    // 构建Transform对象,Transform对象中包含其上游Transform对象,这样上游下游就串成了一个Transform链。
		OneInputTransformation resultTransform = new OneInputTransformation<>(
				this.transformation,
				operatorName,
				operatorFactory,
				outTypeInfo,
				environment.getParallelism());
		@SuppressWarnings({"unchecked", "rawtypes"})
		SingleOutputStreamOperator returnStream = new SingleOutputStreamOperator(environment, resultTransform);
    // 将这Transform对象放入env的transform对象列表。
		getExecutionEnvironment().addOperator(resultTransform);
    // 返回流
		return returnStream;
	}  
}

上面源码中的几个概念需要澄清。

Transformation:首先,FlatMap在FLink编程模型中是算子API,在DataStream中会生成一个Transformation,即逻辑算子。

逻辑算子Transformation最后会对应到物理算子Operator,这个概念对应的就是StreamOperator

StreamOperator:DataStream 上的每一个 Transformation 都对应了一个 StreamOperator,StreamOperator是运行时的具体实现,会决定UDF(User-Defined Funtion)的调用方式。

processElement()方法也是UDF的逻辑被调用的地方,例如FlatMapFunction里的flatMap()方法。

public class StreamFlatMap
		extends AbstractUdfStreamOperator>
		implements OneInputStreamOperator {

	private transient TimestampedCollector collector;

	public StreamFlatMap(FlatMapFunction flatMapper) {
		super(flatMapper);
		chainingStrategy = ChainingStrategy.ALWAYS;
	}

	@Override
	public void open() throws Exception {
		super.open();
		collector = new TimestampedCollector<>(output);
	}

	@Override
	public void processElement(StreamRecord element) throws Exception {
		collector.setTimestamp(element);
    // 调用用户定义的FlatMap
		userFunction.flatMap(element.getValue(), collector);
	}
}

我们可以看到,StreamFlatMap继承了AbstractUdfStreamOperator,从而间接继承了StreamOperator。

public abstract class AbstractStreamOperator
		implements StreamOperator, SetupableStreamOperator, Serializable {
}

StreamOperator是根接口。对于 Streaming 来说所有的算子都继承自 StreamOperator。继承了StreamOperator的扩展接口则有OneInputStreamOperator,TwoInputStreamOperator。实现了StreamOperator的抽象类有AbstractStreamOperator以及它的子类AbstractUdfStreamOperator。

从 API 到 逻辑算子 Transformation,再到 物理算子Operator,就生成了 StreamGraph。下一步Flink会依据StreamOperator来生成 JobGraph。

作业图(JobGraph)是唯一被Flink的数据流引擎所识别的表述作业的数据结构,也正是这一共同的抽象体现了流处理和批处理在运行时的统一。至此就完成了从用户业务代码到Flink运行系统的转化。

0x04 参考

Flink中richfunction的一点小作用

【浅显易懂】scala中map与flatMap的区别

Working with State

flink简单应用: scala编写wordcount

【Flink】Flink基础之实现WordCount程序(Java与Scala版本)

Flink进阶教程:以flatMap为例,如何进行算子自定义

Flink运行时之批处理程序生成计划

你可能感兴趣的:([源码分析] 从FlatMap用法到Flink的内部实现)