一. 概述
LinkedList 是 Java 集合中比较常用的数据结构,与 ArrayList 一样,实现了 List 接口,只不过 ArrayList 是基于数组实现的,而 LinkedList 是基于链表实现的。所以 LinkedList 插入和删除方面要优于 ArrayList,而随机访问上则 ArrayList 性能更好。
除了 LIst 接口之外,LinkedList 还实现了 Deque,Cloneable,Serializable 三个接口。这说明该数据结构支持队列,克隆和序列化操作的。与 ArrayList 一样,允许 null 元素的存在,且是不支持多线程的。
二. 源码解读
- 属性
LinkedList 提供了以下三个成员变量。size,first,last。
transient int size = 0;
transient Node first;
transient Node last;
其中 size 为 LinkedList 的大小,first 和 last 分别为链表的头结点和尾节点。Node 为节点对象。
private static class Node {
E item;
Node next;
Node prev;
Node(Node prev, E element, Node next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
Node 是 LInkedList 的内部类,定义了存储的数据元素,前一个节点和后一个节点,典型的双链表结构。
- 构造方法
public LinkedList() {}
public LinkedList(Collection extends E> c) {
this();
addAll(c);
}
LinkedList 提供了两个构造方法:LinkedList() 和 LinkedList(Collection extends E> c)。
LinkedList() 仅仅构造一个空的列表,没有任何元素。size = 0。first 和 last 都为 null。
后一个构造方法构造一个包含指定 Collection 中所有元素的列表,该构造方法首先会调用空的构造方法,然后通过 addAll() 的方式把 Collection 中的所有元素添加进去。
- 调用 addAll() 方法,传入当前的节点个数 size,此时 size 为
- 检查 index 是否越界
- 将 collection 转换成数组
- 遍历数组,将数组里面的元素创建为节点,并按照顺序连起来。
- 修改当前的节点个数 size 的值
- 操作次数 modCount 自增 1.
public boolean addAll(Collection extends E> c) {
return addAll(size, c);
}
public boolean addAll(int index, Collection extends E> c) {
checkPositionIndex(index);
Object[] a = c.toArray();
int numNew = a.length;
if (numNew == 0)
return false;
Node pred, succ;
if (index == size) {
succ = null;
pred = last;
} else {
succ = node(index);
pred = succ.prev;
}
for (Object o : a) {
@SuppressWarnings("unchecked") E e = (E) o;
Node newNode = new Node<>(pred, e, null);
if (pred == null)
first = newNode;
else
pred.next = newNode;
pred = newNode;
}
if (succ == null) {
last = pred;
} else {
pred.next = succ;
succ.prev = pred;
}
size += numNew;
modCount++;
return true;
}
- add 操作
添加元素到链表末尾
public boolean add(E e) {
linkLast(e);
return true;
}
void linkLast(E e) {
final Node l = last;
final Node newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
add 方法直接调用了 linkLast 方法,而 linkLast 方法是不对外开放的。该方法做了三件事情,新增一个节点,改变其前后引用,将 size 和 modCount 自增 1。其中 modCount 是记录对集合操作的次数。
在指定的位置插入元素
public void add(int index, E element) {
checkPositionIndex(index);
if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}
private void checkPositionIndex(int index) {
if (!isPositionIndex(index))
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private boolean isPositionIndex(int index) {
return index >= 0 && index <= size;
}
void linkBefore(E e, Node succ) {
// assert succ != null;
final Node pred = succ.prev;
final Node newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}
首先检查下标是否越界,然后判断如果 index == size 则添加到末尾,否则将该元素插入的 index 的位置。其中 node(index) 是获取 index 位置的节点,linkBefore 负责把元素 e 插入到 succ 之前。
Node node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
可以看出 node() 方法这里写的还是挺赞的,不是傻乎乎的从头到尾或者从尾到头遍历链表,而是将 index 与 当前链表的一半做对比,比一半小从头遍历,比一半大从后遍历。对于数据量很大时能省下不少时间。
- get 操作
很简单,首先获取节点,然后返回节点的数据即可。
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
- remove 操作
移除指定位置的元素
public E remove(int index) {
checkElementIndex(index);
return unlink(node(index));
}
E unlink(Node x) {
// assert x != null;
final E element = x.item;
final Node next = x.next;
final Node prev = x.prev;
if (prev == null) {
first = next; // 如果移除的是头节点,那么头结点后移
} else {
prev.next = next;
x.prev = null; // 释放节点的前一个元素
}
if (next == null) {
last = prev; // 如果移除的是尾节点,尾结点前移
} else {
next.prev = prev;
x.next = null; // 释放节点的后一个元素
}
x.item = null; // 释放节点数据
size--;
modCount++;
return element;
}
先检查下标是否越界,然后调用 unlink 释放节点。
移除指定元素
public boolean remove(Object o) {
if (o == null) {
for (Node x = first; x != null; x = x.next) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node x = first; x != null; x = x.next) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
判断要移除的元素是否为 null,然后在遍历链表,找到钙元素第一次出现的位置,移除并返回 true。
像其他的常用方法如:getFirst, getLast, removeFirst, removeLast, addFirst, addLast 等都很简单,扫一眼源码就能懂,我这里就不写了。
迭代器
LInkedList 的 iterator() 方法是在其父类 AbstractSequentialList 中定义的,最终一路 debug 到 LinkedList 类这里。其中 index 为 零。
public ListIterator listIterator(int index) {
checkPositionIndex(index);
return new ListItr(index);
}
我们来看看 ListItr。
private Node lastReturned;
private Node next;
private int nextIndex;
private int expectedModCount = modCount;
ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);
nextIndex = index;
}
public boolean hasNext() {
return nextIndex < size;
}
public E next() {
checkForComodification();
if (!hasNext())
throw new NoSuchElementException();
lastReturned = next;
next = next.next;
nextIndex++;
return lastReturned.item;
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
篇幅有限 ,我就只贴主要代码了。由源码可以看出初始化 ListItr 时,将 nextIndex 指向 index, 也就是零。如果该集合为空,那么 index == size 为 true,next 指向 null,否则 next 指向下标为零的元素,也就是第一个。
hasNext 直接返回 nextIndex < size 简单明了。下面看看 next 方法,首先检查 expectedModCount 与 modCount 是否相等,看似无关紧要的代码保证了集合在迭代过程中不被修改[包括新增删除节点等]。然后将 lastReturned 指向 next,next 后移一个节点,nextIndex 自增 1,并返回 lastReturned 节点的元素。
总结
-
从源码可以看出 LinkedList 是基于链表实现的。如下图:
在查找和删除某元素时,区分该元素为 null和不为 null 两种情况来处理,LinkedList 中允许元素为 null。
基于链表实现不存在扩容问题。
查找时先判断该节点位于前半部分还是后半部分,加快了速度
因为基于链表,所以插入删除极快,查找比较慢。
实现了栈和队列的相关方法,所以可作为栈,队列,双端队列来用。