LeetCode:Distinct Subsequences

我的LeetCode解题报告索引

题目链接

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Here is an example:
S = "rabbbit"T = "rabbit"

Return 3.

题目大意:删除S中某些位置的字符可以得到T,总共有几种不同的删除方法

设S的长度为lens,T的长度为lent

算法1:递归解法,首先,从个字符串S的尾部开始扫描,找到第一个和T最后一个字符相同的位置k,那么有下面两种匹配:a. T的最后一个字符和S[k]匹配,b. T的最后一个字符不和S[k]匹配。a相当于子问题:从S[0...lens-2]中删除几个字符得到T[0...lent-2],b相当于子问题:从S[0...lens-2]中删除几个字符得到T[0...lent-1]。那么总的删除方法等于a、b两种情况的删除方法的和。递归解法代码如下,但是通过大数据会超时:

LeetCode:Distinct Subsequences
 1 class Solution {

 2 public:

 3     int numDistinct(string S, string T) {

 4         // IMPORTANT: Please reset any member data you declared, as

 5         // the same Solution instance will be reused for each test case.

 6         return numDistanceRecur(S, S.length()-1, T, T.length()-1);

 7     }

 8     int numDistanceRecur(string &S, int send, string &T, int tend)

 9     {

10         if(tend < 0)return 1;

11         else if(send < 0)return 0;

12         while(send >= 0 && S[send] != T[tend])send--;

13         if(send < 0)return 0;

14         return numDistanceRecur(S,send-1,T,tend-1) + numDistanceRecur(S,send-1,T,tend);

15     }

16 };
View Code

算法2:动态规划,设dp[i][j]是从字符串S[0...i]中删除几个字符得到字符串T[0...j]的不同的删除方法种类,有上面递归的分析可知,动态规划方程如下

  • 如果S[i] = T[j], dp[i][j] = dp[i-1][j-1]+dp[i-1][j]
  • 如果S[i] 不等于 T[j], dp[i][j] = dp[i-1][j]
  • 初始条件:当T为空字符串时,从任意的S删除几个字符得到T的方法为1

代码如下:                                                                                     本文地址

 1 class Solution {

 2 public:

 3     int numDistinct(string S, string T) {

 4         // IMPORTANT: Please reset any member data you declared, as

 5         // the same Solution instance will be reused for each test case.

 6         int lens = S.length(), lent = T.length();

 7         if(lent == 0)return 1;

 8         else if(lens == 0)return 0;

 9         int dp[lens+1][lent+1];

10         memset(dp, 0 , sizeof(dp));

11         for(int i = 0; i <= lens; i++)dp[i][0] = 1;

12         for(int i = 1; i <= lens; i++)

13         {

14             for(int j = 1; j <= lent; j++)

15             {

16                 if(S[i-1] == T[j-1])

17                     dp[i][j] = dp[i-1][j-1]+dp[i-1][j];

18                 else dp[i][j] = dp[i-1][j];

19             }

20         }

21         return dp[lens][lent];

22     }

23 };

【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3440022.html

 

你可能感兴趣的:(LeetCode)