基于Python的深度学习
Chainer 介绍
Posted by 徐志平 on December 14, 2017
这里是 Chainer 教程的第一部分。 在此部分中,您将学习如下内容:
读完此部分,您将能够:
正如前文所述, Chainer 是一个柔性的神经网络框架。我们的主要目标就是柔性,使得我们能够简单直观的写出复杂的网络。
当下已有的深度学习框架使用的是“定义后运行”机制。即意味着,首先定义并且固化一个网络,再周而复始地馈入小批量数据进行训练。由于网络是在任何前向、反向计算前静态定义的,所有的逻辑作为数据必须事先嵌入网络中。 意味着,在诸如Caffe这样的框架中通过声明的方法定义网络结构。(注:可以使用torch.nn, 基于 Theano框架, 以及 TensorFlow 的命令语句定义一个静态网络)
Chainer 对应地采用了一种叫做 “边定义边运行” 的机制, 即, 网络可以在实际进行前向计算的时候同时被定义。 更加准确的说, Chainer 存储的是计算的历史结果而不是计算逻辑。这个策略使我们能够充分利用Python中编程逻辑的力量。例如,Chainer不需要任何魔法就可以将条件和循环引入到网络定义中。 边定义边运行是Chainer的核心概念。 我们将在本教程中展示如何动态定义网络。
这个策略也使编写多GPU并行化变得容易,因为逻辑更接近于网络操作。我们将在本教程后面的章节中回顾这些设施。
Chainer 将网络表示为计算图上的执行路径。计算图是一系列函数应用,因此它可以用多个Function
对象来描述。当这个Function
是一个神经网络层时,功能的参数将通过训练来更新。因此,该函数需要在内部保留可训练的参数,因此Chainer具有Link类,它可以在类的对象上保存可训练参数。在Link
对象中执行的函数的参数被表示为Variable
对象。 简言之,Link
和Function
之间的区别在于它是否包含可训练参数。 神经网络模型通常被描述为一系列Link
和Function
。
您可以通过动态“链接”各种Link
和Function
来构建计算图来定义Chain。在框架中,通过运行链接图来定义网络,因此名称是Chainer。
在本教程的示例代码中,我们假定为了简单起见,已经预先导入了以下语句:
import numpy as np
import chainer
from chainer import cuda, Function, gradient_check, report, training, utils, Variable
from chainer import datasets, iterators, optimizers, serializers
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L
from chainer.training import extensions
这些导入广泛出现在Chainer代码和例子中。为了简单起见,我们在本教程中省略了这些导入。
如上所述,Chainer使用“边定义边运行”方案,因此前向计算本身即定义了网络。为了开始前向计算,我们必须将输入数组设置为一个Variable
对象。这里我们从一个简单的ndarray开始,只有一个元素:
x_data = np.array([5], dtype=np.float32)
x = Variable(x_data)
Variable
对象具有基本的算术运算符。为了计算 y=x2−2x+1y=x2−2x+1, 只需写:
y = x**2 - 2 * x + 1
结果y也是一个Variable
对象,其值可以通过访问data
属性来提取:
y.data
array([ 16.], dtype=float32)
y所持有的不仅是结果的数值。它也保持计算的历史(即计算图),其能够计算其差分。这是通过调用它的backward()
方法完成的:
y.backward()
其运行错误反向传播(也称为反向传播或反向模式自动差分)。然后,计算梯度并将其存储在输入变量x的grad
属性中:
x.grad
array([ 8.], dtype=float32)
我们也可以计算中间变量的梯度。请注意,Chainer默认情况下会释放中间变量的梯度数组以提高内存效率。为了保留梯度信息,请将retain_grad
参数传递给backward
方法:
z = 2*x
y = x**2 - z + 1
y.backward(retain_grad=True)
z.grad
array([-1.], dtype=float32)
否则,z.grad
将为None
,如下所示:
z = 2*x
y = x**2 - z + 1
y.backward()
z.grad
z.grad is None
True
所有这些计算都很容易推广到多元素数组输入。请注意,如果我们想从一个包含多元素数组的变量开始向后计算,我们必须手动设置初始错误。 因为当一个变量的size
(这意味着数组中元素的个数)是1时,它被认为是一个表示损失值的变量对象,所以变量的grad
属性被自动填充为1。 另一方面,当一个变量的大小大于1时,grad
属性保持为None
,并且在运行backward()
之前需要明确地设置初始错误。这可以简单地通过设置输出变量的grad
属性来完成,如下所示:
x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
y = x**2 - 2*x + 1
y.grad = np.ones((2, 3), dtype=np.float32)
y.backward()
x.grad
array([[ 0., 2., 4.],
[ 6., 8., 10.]], dtype=float32)
在
functions
模块中定义了许多采用Variable
对象的函数。您可以将它们结合起来,实现具有自动后向计算的复杂功能.
为了编写神经网络,我们必须将函数与参数相结合,并优化参数。你可以使用连接来做到这一点。Link
是保存参数(即优化目标)的对象。
最基本的是像常规函数一样的连接。我们将介绍更高层次的连接,但是在这里将连接看作简化的带有参数的函数。
最经常使用的连接之一是Linear
连接(也称为完全连接层或仿射变换)。它代表一个数学函数 f(x)=Wx+bf(x)=Wx+b ,其中W
为矩阵和b
为矢量参数。这个连接对应于linear()
,它接受x
,W
,b
作为参数。从三维空间到二维空间的线性连接由以下行定义:
f = L.Linear(3, 2)
大多数函数和链接只接受小批量输入,其中输入数组的第一个维度被视为批量维度。在上面的线性连接情况下,输入必须具有(N,3)的形状,其中N是最小批量大小。
连接的参数被存储为属性。每个参数都是Variable
的一个实例。在Linear
连接的情况下,存储两个参数W
和b
。默认情况下,矩阵W
是随机初始化的,而向量b
是用零初始化的。
f.W.data
array([[ 0.19792122, 0.29951876, -0.31833425],
[-0.59501284, -0.65519476, -0.00605371]], dtype=float32)
f.b.data
array([ 0., 0.], dtype=float32)
Linear
连接的一个实例就像一个通常的函数:
x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
y = f(x)
y.data
array([[-0.15804404, -1.9235636 ],
[ 0.37927318, -5.69234705]], dtype=float32)
有时计算输入空间的维数很麻烦。线性连接和一些(反)卷积连接可以在实例化时省略输入维度,并从第一个小批量中推断出输入维度来。
例如,以下行创建一个输出维度为两个的线性连接:
g = L.Linear(2)
如果我们输入一个小批量的形状为
(N,M)
,则输入维数将被推断为M
,这意味着g.W
将是2×M
矩阵。 请注意,它的参数在第一个小批处理中以懒惰的方式初始化。因此,如果没有数据放入连接,则f
不具有W
属性。
参数的梯度由backward()
方法计算。请注意,梯度是由方法累积而不是覆盖。所以首先你必须清除梯度来更新计算。可以通过调用cleargrads()
方法来完成。
x = Variable(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32))
g = L.Linear(2)
p=g(x)
p
variable([[-2.64461255, 2.90179563],
[-6.81166267, 4.94405651]])
g.cleargrads()
g.grad = np.ones((2, 2), dtype=np.float32)
g.W.grad
g.b.grad
大多数神经网络体系结构包含多个连接。例如,多层感知器由多个线性层组成。我们可以通过组合多个连接来编写具有可训练参数的复杂过程:
l1 = L.Linear(4, 3)
l2 = L.Linear(3, 2)
def my_forward(x):
h = l1(x)
return l2(h)
这里的L表示links
模块。以这种方式定义参数的过程很难重用。更多Pythonic的方式是将连接和程序组合成一个类:
class MyProc(object):
def __init__(self):
self.l1 = L.Linear(4, 3)
self.l2 = L.Linear(3, 2)
def forward(self, x):
h = self.l1(x)
return self.l2(h)
为了使其更加可重用,我们希望支持参数管理,CPU / GPU迁移,强大而灵活的保存/加载功能等。这些功能都由Chainer中的Chain
类支持。那么,我们要做的就是将上面的类定义为 Chain
的子类:
class MyChain(Chain):
def __init__(self):
super(MyChain, self).__init__()
with self.init_scope():
self.l1 = L.Linear(4, 3)
self.l2 = L.Linear(3, 2)
def __call__(self, x):
h = self.l1(x)
return self.l2(h)
它显示了一个复杂的连接是如何通过更连接的链接构建的。诸如l1
和l2
被称为MyChain的子连接。注意,Chain
本身继承自Link
。这意味着我们可以定义更复杂的连接,将MyChain对象作为子连接。
我们经常通过__call__运算符定义一个前向连接。这样的连接和Chains是可调用的,并且像常规函数和变量一样。
另一种定义chain的方法是使用ChainList
类,它的行为类似于连接列表:
class MyChain2(ChainList):
def __init__(self):
super(MyChain2, self).__init__(
L.Linear(4, 3),
L.Linear(3, 2),
)
def __call__(self, x):
h = self[0](x)
return self[1](h)
ChainList
可以方便地使用任意数量的连接,但是如果连接的数量固定且与上述情况相同,则建议使用Chain
类作为基类。
为了获得良好的参数值,我们必须通过优化器类来优化它们。它在给定的连接上运行数值优化算法。许多算法在优化器模块中实现。这里我们使用最简单的称为随机梯度下降(SGD):
model = MyChain()
optimizer = optimizers.SGD()
optimizer.setup(model)
setup()方法针对给定的连接准备对应的优化器。
一些参数/梯度操作,例如权重衰减和梯度剪切,可以通过设置钩子函数到优化器来完成。 钩子函数在梯度计算之后和实际更新参数之前调用。例如,我们可以通过预先运行下一行来设置权重衰减正则化:
optimizer.add_hook(chainer.optimizer.WeightDecay(0.0005))
当然,你可以编写自己的钩子函数。它应该是一个函数或一个可调用的对象,以优化器为参数。
有两种使用优化器的方法。一个是通过训练器使用它,我们将在下面的部分中看到。另一种方式是直接使用它。我们在这里回顾后一种情况。如果您有兴趣以简单的方式使用优化器,请跳过本节并转到下一节。
还有两种直接使用优化器的方法。一个是手动计算梯度,然后调用没有参数的 update()
方法。不要忘记事先清除梯度!
x = np.random.uniform(-1, 1, (2, 4)).astype('f')
model.cleargrads()
# compute gradient here...
loss = F.sum(model(chainer.Variable(x)))
loss.backward()
optimizer.update()
另一种方法是将损失函数传递给update()
方法。在这种情况下,cleargrads()
会被update方法自动调用,所以用户不必手动调用它。
def lossfun(arg1, arg2):
# calculate loss
loss = F.sum(model(arg1 - arg2))
return loss
arg1 = np.random.uniform(-1, 1, (2, 4)).astype('f')
arg2 = np.random.uniform(-1, 1, (2, 4)).astype('f')
optimizer.update(lossfun, chainer.Variable(arg1), chainer.Variable(arg2))
当我们想要训练神经网络时,我们必须运行训练循环多次更新参数。典型的训练循环包括以下过程:
Chainer提供了一个简单而强大的方法来使写这样的训练过程变得容易。训练循环抽象主要由两部分组成:
数据集抽象。它在上面的列表中实现了1和2。核心组件在数据集模块中定义。数据集和迭代器模块中还有许多数据集和迭代器的实现。
训练器。它在上面的列表中实现3,4,5和6。整个程序由Trainer执行。更新参数(3和4)的方式由Updater
定义,可以自由定制。 5和6由Extension
的实例来实现,它将一个额外的过程附加到训练循环中。用户可以通过添加扩展来自由定制训练程序。用户也可以实现自己的扩展。
在继续第一个例子之前,我们介绍Serializer,这是本页中描述的最后一个核心功能。序列化器是一个简单的接口来序列化或反序列化一个对象。连接,优化器和训练器都支持序列化。
序列化器模块中定义了具体的序列化器。它支持NumPy NPZ和HDF5格式。
例如,我们可以通过serializers.save_npz()函数将连接对象序列化成NPZ文件:
serializers.save_npz('my.model', model)
它将模型的参数以NPZ格式保存到文件“my.model”中。保存的模型可以被serializers.load_npz()函数读取:
serializers.load_npz('my.model', model)
请注意,只有参数和持久值由该序列化代码序列化。其他属性不会自动保存。您可以通过
Link.add_persistent()
方法将数组,标量或任何可序列化的对象注册为持久值。注册的值可以通过传递给add_persistent
方法的名称的属性来访问。
优化器的状态也可以通过相同的函数来保存:
serializers.save_npz('my.state', optimizer)
serializers.load_npz('my.state', optimizer)
请注意,优化器的序列化只保存其内部状态,包括迭代次数,MomentumSGD的动量向量等。它不保存目标连接的参数和永久值。我们必须明确地保存与优化器的目标连接,从保存状态恢复优化。
如果安装了h5py软件包,则支持HDF5格式。 HDF5格式的序列化和反序列化与NPZ格式的序列化和反序列化几乎相同;只需用save_hdf5()和load_hdf5()分别替换save_npz()和load_npz()即可。
现在,您可以使用多层感知器(MLP)来解决多类分类任务。我们使用手写数字数据集称为MNIST,这是机器学习中长期使用的事实上的“hello world”示例之一。这个MNIST例子也可以在官方仓库的examples / mnist目录中找到。我们演示如何使用训练器来构建和运行本节中的训练循环。
我们首先必须准备MNIST数据集。 MNIST数据集由70,000个尺寸为28×28(即784个像素)的灰度图像和相应的数字标签组成。数据集默认分为6万个训练图像和10,000个测试图像。我们可以通过datasets.get_mnist()
获得矢量化版本(即一组784维向量)。
train, test = datasets.get_mnist()
此代码自动下载MNIST数据集并将NumPy数组保存到 $(HOME)/.chainer
目录中。返回的训练集和测试集可以看作图像标签配对的列表(严格地说,它们是TupleDataset的实例)。
我们还必须定义如何迭代这些数据集。我们想要在数据集的每次扫描开始时对每个epoch的训练数据集进行重新洗牌。在这种情况下,我们可以使用iterators.SerialIterator
。
train_iter = iterators.SerialIterator(train, batch_size=100, shuffle=True)
另一方面,我们不必洗牌测试数据集。在这种情况下,我们可以通过shuffle = False来禁止混洗。当底层数据集支持快速切片时,它使迭代速度更快。
test_iter = iterators.SerialIterator(test, batch_size=100, repeat=False, shuffle=False)
当所有的例子被访问时,我们停止迭代通过设定 repeat=False 。测试/验证数据集通常需要此选项;没有这个选项,迭代进入一个无限循环。
接下来,我们定义架构。我们使用一个简单的三层网络,每层100个单元。
class MLP(Chain):
def __init__(self, n_units, n_out):
super(MLP, self).__init__()
with self.init_scope():
# the size of the inputs to each layer will be inferred
self.l1 = L.Linear(None, n_units) # n_in -> n_units
self.l2 = L.Linear(None, n_units) # n_units -> n_units
self.l3 = L.Linear(None, n_out) # n_units -> n_out
def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
y = self.l3(h2)
return y
该链接使用relu()作为激活函数。请注意,“l3”链接是最终的全连接层,其输出对应于十个数字的分数。
为了计算损失值或评估预测的准确性,我们在上面的MLP连接的基础上定义一个分类器连接:
class Classifier(Chain):
def __init__(self, predictor):
super(Classifier, self).__init__()
with self.init_scope():
self.predictor = predictor
def __call__(self, x, t):
y = self.predictor(x)
loss = F.softmax_cross_entropy(y, t)
accuracy = F.accuracy(y, t)
report({'loss': loss, 'accuracy': accuracy}, self)
return loss
这个分类器类计算准确性和损失,并返回损失值。参数对x和t对应于数据集中的每个示例(图像和标签的元组)。 softmax_cross_entropy()
计算给定预测和基准真实标签的损失值。 accuracy()
计算预测准确度。我们可以为分类器的一个实例设置任意的预测器连接。
report()
函数向训练器报告损失和准确度。收集训练统计信息的具体机制参见 Reporter
. 您也可以采用类似的方式收集其他类型的观测值,如激活统计。
请注意,类似上面的分类器的类被定义为chainer.links.Classifier
。因此,我们将使用此预定义的Classifier
连接而不是使用上面的示例。
model = L.Classifier(MLP(100, 10)) # the input size, 784, is inferred
optimizer = optimizers.SGD()
optimizer.setup(model)
现在我们可以建立一个训练器对象。
updater = training.StandardUpdater(train_iter, optimizer)
trainer = training.Trainer(updater, (20, 'epoch'), out='result')
第二个参数(20,’epoch’)表示训练的持续时间。我们可以使用epoch或迭代作为单位。在这种情况下,我们通过遍历训练集20次来训练多层感知器。
为了调用训练循环,我们只需调用run()方法。
这个方法执行整个训练序列。
上面的代码只是优化了参数。在大多数情况下,我们想看看培训的进展情况,我们可以在调用run方法之前使用扩展插入。
trainer.extend(extensions.Evaluator(test_iter, model))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(['epoch', 'main/accuracy', 'validation/main/accuracy']))
trainer.extend(extensions.ProgressBar())
trainer.run()
epoch main/accuracy validation/main/accuracy
[J total [..................................................] 0.83%
this epoch [########..........................................] 16.67%
100 iter, 0 epoch / 20 epochs
inf iters/sec. Estimated time to finish: 0:00:00.
[4A[J total [..................................................] 1.67%
this epoch [################..................................] 33.33%
200 iter, 0 epoch / 20 epochs
270.19 iters/sec. Estimated time to finish: 0:00:43.672168.
[4A[J total [#.................................................] 2.50%
this epoch [#########################.........................] 50.00%
300 iter, 0 epoch / 20 epochs
271.99 iters/sec. Estimated time to finish: 0:00:43.017048.
[4A[J total [#.................................................] 3.33%
this epoch [#################################.................] 66.67%
400 iter, 0 epoch / 20 epochs
274.82 iters/sec. Estimated time to finish: 0:00:42.209075.
[4A[J total [##................................................] 4.17%
this epoch [#########################################.........] 83.33%
500 iter, 0 epoch / 20 epochs
275.19 iters/sec. Estimated time to finish: 0:00:41.789476.
[4A[J1 0.6581 0.8475
[J total [##................................................] 5.00%
this epoch [..................................................] 0.00%
600 iter, 1 epoch / 20 epochs
250.26 iters/sec. Estimated time to finish: 0:00:45.553447.
[4A[J total [##................................................] 5.83%
this epoch [########..........................................] 16.67%
700 iter, 1 epoch / 20 epochs
251.78 iters/sec. Estimated time to finish: 0:00:44.879872.
[4A[J total [###...............................................] 6.67%
this epoch [################..................................] 33.33%
800 iter, 1 epoch / 20 epochs
253.07 iters/sec. Estimated time to finish: 0:00:44.257362.
[4A[J total [###...............................................] 7.50%
this epoch [#########################.........................] 50.00%
900 iter, 1 epoch / 20 epochs
253.97 iters/sec. Estimated time to finish: 0:00:43.706513.
[4A[J total [####..............................................] 8.33%
this epoch [#################################.................] 66.67%
1000 iter, 1 epoch / 20 epochs
255.94 iters/sec. Estimated time to finish: 0:00:42.979372.
[4A[J total [####..............................................] 9.17%
this epoch [#########################################.........] 83.33%
1100 iter, 1 epoch / 20 epochs
257.61 iters/sec. Estimated time to finish: 0:00:42.311793.
[4A[J2 0.868483 0.8922
[J total [#####.............................................] 10.00%
this epoch [..................................................] 0.00%
1200 iter, 2 epoch / 20 epochs
250.02 iters/sec. Estimated time to finish: 0:00:43.196043.
[4A[J total [#####.............................................] 10.83%
this epoch [########..........................................] 16.67%
1300 iter, 2 epoch / 20 epochs
250.73 iters/sec. Estimated time to finish: 0:00:42.674737.
[4A[J total [#####.............................................] 11.67%
this epoch [################..................................] 33.33%
1400 iter, 2 epoch / 20 epochs
250.76 iters/sec. Estimated time to finish: 0:00:42.271780.
[4A[J total [######............................................] 12.50%
this epoch [#########################.........................] 50.00%
1500 iter, 2 epoch / 20 epochs
250.66 iters/sec. Estimated time to finish: 0:00:41.889907.
[4A[J total [######............................................] 13.33%
this epoch [#################################.................] 66.67%
1600 iter, 2 epoch / 20 epochs
250.63 iters/sec. Estimated time to finish: 0:00:41.494966.
[4A[J total [#######...........................................] 14.17%
this epoch [#########################################.........] 83.33%
1700 iter, 2 epoch / 20 epochs
250.3 iters/sec. Estimated time to finish: 0:00:41.150503.
[4A[J3 0.893583 0.9065
[J total [#######...........................................] 15.00%
this epoch [..................................................] 0.00%
1800 iter, 3 epoch / 20 epochs
245.03 iters/sec. Estimated time to finish: 0:00:41.627412.
[4A[J total [#######...........................................] 15.83%
this epoch [########..........................................] 16.67%
1900 iter, 3 epoch / 20 epochs
246.29 iters/sec. Estimated time to finish: 0:00:41.007745.
[4A[J total [########..........................................] 16.67%
this epoch [################..................................] 33.33%
2000 iter, 3 epoch / 20 epochs
246.63 iters/sec. Estimated time to finish: 0:00:40.547184.
[4A[J total [########..........................................] 17.50%
this epoch [#########################.........................] 50.00%
2100 iter, 3 epoch / 20 epochs
247.22 iters/sec. Estimated time to finish: 0:00:40.045529.
[4A[J total [#########.........................................] 18.33%
this epoch [#################################.................] 66.67%
2200 iter, 3 epoch / 20 epochs
248.21 iters/sec. Estimated time to finish: 0:00:39.482367.
[4A[J total [#########.........................................] 19.17%
this epoch [#########################################.........] 83.33%
2300 iter, 3 epoch / 20 epochs
248.73 iters/sec. Estimated time to finish: 0:00:38.997955.
[4A[J4 0.90485 0.9154
[J total [##########........................................] 20.00%
this epoch [..................................................] 0.00%
2400 iter, 4 epoch / 20 epochs
244.21 iters/sec. Estimated time to finish: 0:00:39.309754.
[4A[J total [##########........................................] 20.83%
this epoch [########..........................................] 16.67%
2500 iter, 4 epoch / 20 epochs
244.55 iters/sec. Estimated time to finish: 0:00:38.847329.
[4A[J total [##########........................................] 21.67%
this epoch [################..................................] 33.33%
2600 iter, 4 epoch / 20 epochs
245.78 iters/sec. Estimated time to finish: 0:00:38.245938.
[4A[J total [###########.......................................] 22.50%
this epoch [#########################.........................] 50.00%
2700 iter, 4 epoch / 20 epochs
246.89 iters/sec. Estimated time to finish: 0:00:37.668330.
[4A[J total [###########.......................................] 23.33%
this epoch [#################################.................] 66.67%
2800 iter, 4 epoch / 20 epochs
247.85 iters/sec. Estimated time to finish: 0:00:37.119132.
[4A[J total [############......................................] 24.17%
this epoch [#########################################.........] 83.33%
2900 iter, 4 epoch / 20 epochs
248.84 iters/sec. Estimated time to finish: 0:00:36.568961.
[4A[J5 0.9128 0.9222
[J total [############......................................] 25.00%
this epoch [..................................................] 0.00%
3000 iter, 5 epoch / 20 epochs
246.32 iters/sec. Estimated time to finish: 0:00:36.537719.
[4A[J total [############......................................] 25.83%
this epoch [########..........................................] 16.67%
3100 iter, 5 epoch / 20 epochs
247.27 iters/sec. Estimated time to finish: 0:00:35.993611.
[4A[J total [#############.....................................] 26.67%
this epoch [################..................................] 33.33%
3200 iter, 5 epoch / 20 epochs
247.64 iters/sec. Estimated time to finish: 0:00:35.535495.
[4A[J total [#############.....................................] 27.50%
this epoch [#########################.........................] 50.00%
3300 iter, 5 epoch / 20 epochs
248.02 iters/sec. Estimated time to finish: 0:00:35.078297.
[4A[J total [##############....................................] 28.33%
this epoch [#################################.................] 66.67%
3400 iter, 5 epoch / 20 epochs
248.3 iters/sec. Estimated time to finish: 0:00:34.635942.
[4A[J total [##############....................................] 29.17%
this epoch [#########################################.........] 83.33%
3500 iter, 5 epoch / 20 epochs
248.35 iters/sec. Estimated time to finish: 0:00:34.225545.
[4A[J6 0.9182 0.9251
[J total [###############...................................] 30.00%
this epoch [..................................................] 0.00%
3600 iter, 6 epoch / 20 epochs
245.49 iters/sec. Estimated time to finish: 0:00:34.217710.
[4A[J total [###############...................................] 30.83%
this epoch [########..........................................] 16.67%
3700 iter, 6 epoch / 20 epochs
245.88 iters/sec. Estimated time to finish: 0:00:33.755860.
[4A[J total [###############...................................] 31.67%
this epoch [################..................................] 33.33%
3800 iter, 6 epoch / 20 epochs
245.9 iters/sec. Estimated time to finish: 0:00:33.346716.
[4A[J total [################..................................] 32.50%
this epoch [#########################.........................] 50.00%
3900 iter, 6 epoch / 20 epochs
245.96 iters/sec. Estimated time to finish: 0:00:32.931534.
[4A[J total [################..................................] 33.33%
this epoch [#################################.................] 66.67%
4000 iter, 6 epoch / 20 epochs
245.99 iters/sec. Estimated time to finish: 0:00:32.521949.
[4A[J total [#################.................................] 34.17%
this epoch [#########################################.........] 83.33%
4100 iter, 6 epoch / 20 epochs
246.12 iters/sec. Estimated time to finish: 0:00:32.098613.
[4A[J7 0.923683 0.9281
[J total [#################.................................] 35.00%
this epoch [..................................................] 0.00%
4200 iter, 7 epoch / 20 epochs
244.37 iters/sec. Estimated time to finish: 0:00:31.918388.
[4A[J total [#################.................................] 35.83%
this epoch [########..........................................] 16.67%
4300 iter, 7 epoch / 20 epochs
244.24 iters/sec. Estimated time to finish: 0:00:31.526645.
[4A[J total [##################................................] 36.67%
this epoch [################..................................] 33.33%
4400 iter, 7 epoch / 20 epochs
244.7 iters/sec. Estimated time to finish: 0:00:31.058855.
[4A[J total [##################................................] 37.50%
this epoch [#########################.........................] 50.00%
4500 iter, 7 epoch / 20 epochs
245.22 iters/sec. Estimated time to finish: 0:00:30.584594.
[4A[J total [###################...............................] 38.33%
this epoch [#################################.................] 66.67%
4600 iter, 7 epoch / 20 epochs
245.84 iters/sec. Estimated time to finish: 0:00:30.100470.
[4A[J total [###################...............................] 39.17%
this epoch [#########################################.........] 83.33%
4700 iter, 7 epoch / 20 epochs
246.3 iters/sec. Estimated time to finish: 0:00:29.638363.
[4A[J8 0.927233 0.9312
[J total [####################..............................] 40.00%
this epoch [..................................................] 0.00%
4800 iter, 8 epoch / 20 epochs
245.02 iters/sec. Estimated time to finish: 0:00:29.385524.
[4A[J total [####################..............................] 40.83%
this epoch [########..........................................] 16.67%
4900 iter, 8 epoch / 20 epochs
245.47 iters/sec. Estimated time to finish: 0:00:28.923795.
[4A[J total [####################..............................] 41.67%
this epoch [################..................................] 33.33%
5000 iter, 8 epoch / 20 epochs
245.91 iters/sec. Estimated time to finish: 0:00:28.465973.
[4A[J total [#####################.............................] 42.50%
this epoch [#########################.........................] 50.00%
5100 iter, 8 epoch / 20 epochs
246.47 iters/sec. Estimated time to finish: 0:00:27.994909.
[4A[J total [#####################.............................] 43.33%
this epoch [#################################.................] 66.67%
5200 iter, 8 epoch / 20 epochs
246.95 iters/sec. Estimated time to finish: 0:00:27.535404.
[4A[J total [######################............................] 44.17%
this epoch [#########################################.........] 83.33%
5300 iter, 8 epoch / 20 epochs
247.33 iters/sec. Estimated time to finish: 0:00:27.089584.
[4A[J9 0.931317 0.9341
[J total [######################............................] 45.00%
this epoch [..................................................] 0.00%
5400 iter, 9 epoch / 20 epochs
245.58 iters/sec. Estimated time to finish: 0:00:26.874639.
[4A[J total [######################............................] 45.83%
this epoch [########..........................................] 16.67%
5500 iter, 9 epoch / 20 epochs
245.87 iters/sec. Estimated time to finish: 0:00:26.437190.
[4A[J total [#######################...........................] 46.67%
this epoch [################..................................] 33.33%
5600 iter, 9 epoch / 20 epochs
246.33 iters/sec. Estimated time to finish: 0:00:25.981189.
[4A[J total [#######################...........................] 47.50%
this epoch [#########################.........................] 50.00%
5700 iter, 9 epoch / 20 epochs
246.78 iters/sec. Estimated time to finish: 0:00:25.528408.
[4A[J total [########################..........................] 48.33%
this epoch [#################################.................] 66.67%
5800 iter, 9 epoch / 20 epochs
247.2 iters/sec. Estimated time to finish: 0:00:25.080847.
[4A[J total [########################..........................] 49.17%
this epoch [#########################################.........] 83.33%
5900 iter, 9 epoch / 20 epochs
247.69 iters/sec. Estimated time to finish: 0:00:24.627826.
[4A[J10 0.934733 0.9369
[J total [#########################.........................] 50.00%
this epoch [..................................................] 0.00%
6000 iter, 10 epoch / 20 epochs
246.59 iters/sec. Estimated time to finish: 0:00:24.332159.
[4A[J total [#########################.........................] 50.83%
this epoch [########..........................................] 16.67%
6100 iter, 10 epoch / 20 epochs
247 iters/sec. Estimated time to finish: 0:00:23.886641.
[4A[J total [#########################.........................] 51.67%
this epoch [################..................................] 33.33%
6200 iter, 10 epoch / 20 epochs
247.36 iters/sec. Estimated time to finish: 0:00:23.448076.
[4A[J total [##########################........................] 52.50%
this epoch [#########################.........................] 50.00%
6300 iter, 10 epoch / 20 epochs
247.73 iters/sec. Estimated time to finish: 0:00:23.008541.
[4A[J total [##########################........................] 53.33%
this epoch [#################################.................] 66.67%
6400 iter, 10 epoch / 20 epochs
248.16 iters/sec. Estimated time to finish: 0:00:22.566452.
[4A[J total [###########################.......................] 54.17%
this epoch [#########################################.........] 83.33%
6500 iter, 10 epoch / 20 epochs
248.61 iters/sec. Estimated time to finish: 0:00:22.123234.
[4A[J11 0.937883 0.9414
[J total [###########################.......................] 55.00%
this epoch [..................................................] 0.00%
6600 iter, 11 epoch / 20 epochs
247.52 iters/sec. Estimated time to finish: 0:00:21.816101.
[4A[J total [###########################.......................] 55.83%
this epoch [########..........................................] 16.67%
6700 iter, 11 epoch / 20 epochs
247.67 iters/sec. Estimated time to finish: 0:00:21.399559.
[4A[J total [############################......................] 56.67%
this epoch [################..................................] 33.33%
6800 iter, 11 epoch / 20 epochs
247.88 iters/sec. Estimated time to finish: 0:00:20.977519.
[4A[J total [############################......................] 57.50%
this epoch [#########################.........................] 50.00%
6900 iter, 11 epoch / 20 epochs
248.13 iters/sec. Estimated time to finish: 0:00:20.553526.
[4A[J total [#############################.....................] 58.33%
this epoch [#################################.................] 66.67%
7000 iter, 11 epoch / 20 epochs
248.28 iters/sec. Estimated time to finish: 0:00:20.138771.
[4A[J total [#############################.....................] 59.17%
this epoch [#########################################.........] 83.33%
7100 iter, 11 epoch / 20 epochs
248.42 iters/sec. Estimated time to finish: 0:00:19.724508.
[4A[J12 0.940583 0.9438
[J total [##############################....................] 60.00%
this epoch [..................................................] 0.00%
7200 iter, 12 epoch / 20 epochs
247.45 iters/sec. Estimated time to finish: 0:00:19.398094.
[4A[J total [##############################....................] 60.83%
this epoch [########..........................................] 16.67%
7300 iter, 12 epoch / 20 epochs
247.79 iters/sec. Estimated time to finish: 0:00:18.967364.
[4A[J total [##############################....................] 61.67%
this epoch [################..................................] 33.33%
7400 iter, 12 epoch / 20 epochs
248.1 iters/sec. Estimated time to finish: 0:00:18.540794.
[4A[J total [###############################...................] 62.50%
this epoch [#########################.........................] 50.00%
7500 iter, 12 epoch / 20 epochs
248.46 iters/sec. Estimated time to finish: 0:00:18.111734.
[4A[J total [###############################...................] 63.33%
this epoch [#################################.................] 66.67%
7600 iter, 12 epoch / 20 epochs
248.77 iters/sec. Estimated time to finish: 0:00:17.687175.
[4A[J total [################################..................] 64.17%
this epoch [#########################################.........] 83.33%
7700 iter, 12 epoch / 20 epochs
249.07 iters/sec. Estimated time to finish: 0:00:17.264007.
[4A[J13 0.942633 0.9451
[J total [################################..................] 65.00%
this epoch [..................................................] 0.00%
7800 iter, 13 epoch / 20 epochs
248.22 iters/sec. Estimated time to finish: 0:00:16.920387.
[4A[J total [################################..................] 65.83%
this epoch [########..........................................] 16.67%
7900 iter, 13 epoch / 20 epochs
248.52 iters/sec. Estimated time to finish: 0:00:16.497482.
[4A[J total [#################################.................] 66.67%
this epoch [################..................................] 33.33%
8000 iter, 13 epoch / 20 epochs
248.86 iters/sec. Estimated time to finish: 0:00:16.073042.
[4A[J total [#################################.................] 67.50%
this epoch [#########################.........................] 50.00%
8100 iter, 13 epoch / 20 epochs
249.2 iters/sec. Estimated time to finish: 0:00:15.649976.
[4A[J total [##################################................] 68.33%
this epoch [#################################.................] 66.67%
8200 iter, 13 epoch / 20 epochs
249.47 iters/sec. Estimated time to finish: 0:00:15.232395.
[4A[J total [##################################................] 69.17%
this epoch [#########################################.........] 83.33%
8300 iter, 13 epoch / 20 epochs
249.72 iters/sec. Estimated time to finish: 0:00:14.816816.
[4A[J14 0.945083 0.9465
[J total [###################################...............] 70.00%
this epoch [..................................................] 0.00%
8400 iter, 14 epoch / 20 epochs
248.89 iters/sec. Estimated time to finish: 0:00:14.463988.
[4A[J total [###################################...............] 70.83%
this epoch [########..........................................] 16.67%
8500 iter, 14 epoch / 20 epochs
249.19 iters/sec. Estimated time to finish: 0:00:14.045501.
[4A[J total [###################################...............] 71.67%
this epoch [################..................................] 33.33%
8600 iter, 14 epoch / 20 epochs
249.44 iters/sec. Estimated time to finish: 0:00:13.630462.
[4A[J total [####################################..............] 72.50%
this epoch [#########################.........................] 50.00%
8700 iter, 14 epoch / 20 epochs
249.64 iters/sec. Estimated time to finish: 0:00:13.219213.
[4A[J total [####################################..............] 73.33%
this epoch [#################################.................] 66.67%
8800 iter, 14 epoch / 20 epochs
249.92 iters/sec. Estimated time to finish: 0:00:12.804288.
[4A[J total [#####################################.............] 74.17%
this epoch [#########################################.........] 83.33%
8900 iter, 14 epoch / 20 epochs
250.18 iters/sec. Estimated time to finish: 0:00:12.390956.
[4A[J15 0.947233 0.9495
[J total [#####################################.............] 75.00%
this epoch [..................................................] 0.00%
9000 iter, 15 epoch / 20 epochs
249.4 iters/sec. Estimated time to finish: 0:00:12.028884.
[4A[J total [#####################################.............] 75.83%
this epoch [########..........................................] 16.67%
9100 iter, 15 epoch / 20 epochs
249.64 iters/sec. Estimated time to finish: 0:00:11.616690.
[4A[J total [######################################............] 76.67%
this epoch [################..................................] 33.33%
9200 iter, 15 epoch / 20 epochs
249.92 iters/sec. Estimated time to finish: 0:00:11.203418.
[4A[J total [######################################............] 77.50%
this epoch [#########################.........................] 50.00%
9300 iter, 15 epoch / 20 epochs
250.17 iters/sec. Estimated time to finish: 0:00:10.792487.
[4A[J total [#######################################...........] 78.33%
this epoch [#################################.................] 66.67%
9400 iter, 15 epoch / 20 epochs
250.43 iters/sec. Estimated time to finish: 0:00:10.382150.
[4A[J total [#######################################...........] 79.17%
this epoch [#########################################.........] 83.33%
9500 iter, 15 epoch / 20 epochs
250.59 iters/sec. Estimated time to finish: 0:00:09.976316.
[4A[J16 0.949033 0.9496
[J total [########################################..........] 80.00%
this epoch [..................................................] 0.00%
9600 iter, 16 epoch / 20 epochs
249.87 iters/sec. Estimated time to finish: 0:00:09.605143.
[4A[J total [########################################..........] 80.83%
this epoch [########..........................................] 16.67%
9700 iter, 16 epoch / 20 epochs
250.05 iters/sec. Estimated time to finish: 0:00:09.197988.
[4A[J total [########################################..........] 81.67%
this epoch [################..................................] 33.33%
9800 iter, 16 epoch / 20 epochs
250.32 iters/sec. Estimated time to finish: 0:00:08.788854.
[4A[J total [#########################################.........] 82.50%
this epoch [#########################.........................] 50.00%
9900 iter, 16 epoch / 20 epochs
250.58 iters/sec. Estimated time to finish: 0:00:08.380646.
[4A[J total [#########################################.........] 83.33%
this epoch [#################################.................] 66.67%
10000 iter, 16 epoch / 20 epochs
250.77 iters/sec. Estimated time to finish: 0:00:07.975449.
[4A[J total [##########################################........] 84.17%
this epoch [#########################################.........] 83.33%
10100 iter, 16 epoch / 20 epochs
251.01 iters/sec. Estimated time to finish: 0:00:07.569486.
[4A[J17 0.9507 0.9526
[J total [##########################################........] 85.00%
this epoch [..................................................] 0.00%
10200 iter, 17 epoch / 20 epochs
250.13 iters/sec. Estimated time to finish: 0:00:07.196375.
[4A[J total [##########################################........] 85.83%
this epoch [########..........................................] 16.67%
10300 iter, 17 epoch / 20 epochs
250.15 iters/sec. Estimated time to finish: 0:00:06.795972.
[4A[J total [###########################################.......] 86.67%
this epoch [################..................................] 33.33%
10400 iter, 17 epoch / 20 epochs
250.12 iters/sec. Estimated time to finish: 0:00:06.397005.
[4A[J total [###########################################.......] 87.50%
this epoch [#########################.........................] 50.00%
10500 iter, 17 epoch / 20 epochs
250.15 iters/sec. Estimated time to finish: 0:00:05.996337.
[4A[J total [############################################......] 88.33%
this epoch [#################################.................] 66.67%
10600 iter, 17 epoch / 20 epochs
251.26 iters/sec. Estimated time to finish: 0:00:05.571862.
[4A[J total [############################################......] 89.17%
this epoch [#########################################.........] 83.33%
10700 iter, 17 epoch / 20 epochs
251.44 iters/sec. Estimated time to finish: 0:00:05.170228.
[4A[J18 0.952383 0.9532
[J total [#############################################.....] 90.00%
this epoch [..................................................] 0.00%
10800 iter, 18 epoch / 20 epochs
250.63 iters/sec. Estimated time to finish: 0:00:04.787898.
[4A[J total [#############################################.....] 90.83%
this epoch [########..........................................] 16.67%
10900 iter, 18 epoch / 20 epochs
250.76 iters/sec. Estimated time to finish: 0:00:04.386683.
[4A[J total [#############################################.....] 91.67%
this epoch [################..................................] 33.33%
11000 iter, 18 epoch / 20 epochs
250.8 iters/sec. Estimated time to finish: 0:00:03.987294.
[4A[J total [##############################################....] 92.50%
this epoch [#########################.........................] 50.00%
11100 iter, 18 epoch / 20 epochs
250.85 iters/sec. Estimated time to finish: 0:00:03.587843.
[4A[J total [##############################################....] 93.33%
this epoch [#################################.................] 66.67%
11200 iter, 18 epoch / 20 epochs
251.83 iters/sec. Estimated time to finish: 0:00:03.176797.
[4A[J total [###############################################...] 94.17%
this epoch [#########################################.........] 83.33%
11300 iter, 18 epoch / 20 epochs
252 iters/sec. Estimated time to finish: 0:00:02.777783.
[4A[J19 0.953817 0.953
[J total [###############################################...] 95.00%
this epoch [..................................................] 0.00%
11400 iter, 19 epoch / 20 epochs
251.32 iters/sec. Estimated time to finish: 0:00:02.387425.
[4A[J total [###############################################...] 95.83%
this epoch [########..........................................] 16.67%
11500 iter, 19 epoch / 20 epochs
251.59 iters/sec. Estimated time to finish: 0:00:01.987384.
[4A[J total [################################################..] 96.67%
this epoch [################..................................] 33.33%
11600 iter, 19 epoch / 20 epochs
251.86 iters/sec. Estimated time to finish: 0:00:01.588182.
[4A[J total [################################################..] 97.50%
this epoch [#########################.........................] 50.00%
11700 iter, 19 epoch / 20 epochs
252.12 iters/sec. Estimated time to finish: 0:00:01.189929.
[4A[J total [#################################################.] 98.33%
this epoch [#################################.................] 66.67%
11800 iter, 19 epoch / 20 epochs
253.16 iters/sec. Estimated time to finish: 0:00:00.790023.
[4A[J total [#################################################.] 99.17%
this epoch [#########################################.........] 83.33%
11900 iter, 19 epoch / 20 epochs
253.1 iters/sec. Estimated time to finish: 0:00:00.395094.
[4A[J20 0.95535 0.9551
[J total [##################################################] 100.00%
this epoch [..................................................] 0.00%
12000 iter, 20 epoch / 20 epochs
252.37 iters/sec. Estimated time to finish: 0:00:00.
[4A[J
这些扩展执行以下任务:
Evaluator 在每个epoch 结束时基于测试数据集评估当前模型。它会自动切换到测试模式,因此我们不必为在训练/测试模式(例如,dropout(),BatchNormalization)中表现不同的模式采取任何特殊的功能。
LogReport 汇总要报告的数值并将其发送到输出目录中的日志文件。
PrintReport 在LogReport中打印选定的项目。
ProgressBar 显示进度条。
在chainer.training.extensions模块中实现了许多扩展。其中最重要的一个就是snapshot(),它将训练过程的快照(即Trainer对象)保存到输出目录中的一个文件中。
examples / mnist目录中的示例代码还包含GPU支持,尽管其基本部分与本教程中的代码相同。我们将在后面的章节中回顾如何使用GPU。
转自:https://bennix.github.io/blog/2017/12/14/chain_basic/