人工智能的三大学术流派有哪些?

今天无意间听到了一位同事说起人工智能的三大流派,这个也有流派?想先了解一下,就在网上搜索了一下相关的基础知识进行补充。

前世今生

人工智能在其学科发展的60余年历史中,有许多不同学科背景的学者都曾对人工智能做出过各自的理解,提出不同的观点,由此产生了不同的学术流派。
这其中,对人工智能研究影响较大的主要有符号主义联结主义行为主义三大学派。

三大学派

一、符号主义(symbolicism)-数理逻辑

符号主义学派认为人工智能源于数学逻辑,人类认知和思维的基本单元是符号,而认知过程就是在符号表示上的一种运算。

符号主义致力于用某种符号来描述人类的认知过程,并把这种符号输入到能处理符号的计算机中,从而模拟人类的认知过程,实现人工智能。

符号主义的发展大概经历了几个阶段:推理期(20世纪50年代–20世纪70年代),知识期(20世纪70年代—-)。“推理期”人们基于符号知识表示、通过演绎推理技术取得了很大的成就;“知识期”人们基于符号表示、通过获取和利用领域知识来建立专家系统取得了大量的成果

二、联结主义(connectionism)-仿生学

连接学派通过算法模拟神经元,并把这样一个单元叫做感知机,将多个感知机组成一层网络,多层这样的网络互相连接最终得到神经网络。
这一学派认为人工智能源于仿生学,特别是人脑模型的研究。联结主义学派从神经生理学和认知科学的研究成果出发,把人的智能归结为人脑的高层活动的结果,强调智能活动是由大量简单的单元通过复杂的相互连接后并行运行的结果。我们可以根据要解决的实际问题来构建神经网络,进而用数据不断训练这一网络,调整连接权重来模拟智能。

20世纪60~70年代,连接主义,尤其是对以感知机(perceptron)为代表的脑模型的研究出现过热潮,由于受到当时的理论模型、生物原型和技术条件的限制,脑模型研究在20世纪70年代后期至80年代初期落入低潮。直到Hopfield教授在1982年和1984年发表两篇重要论文,提出用硬件模拟神经网络以后,连接主义才又重新抬头。1986年,鲁梅尔哈特(Rumelhart)等人提出多层网络中的反向传播算法(BP)算法。进入21世纪后,连接主义卷土重来,提出了“深度学习”的概念。

三、行为主义(actionism)-控制论

是一种基于“感知—行动”的行为智能模拟方法。行为主义学派认为,行为是有机体用以适应环境变化的各种身体反应的组合,它的理论目标在于预见和控制行为。

行为主义是20世纪末才以人工智能新学派的面孔出现的,引起许多人的兴趣。这一学派的代表作首推布鲁克斯( Brooks)的六足行走机器人,它被看作新一代的“控制论动物”,是一个基于感知-动作模式的模拟昆虫行为的控制系统。

备注:
https://www.toutiao.com/a6639167420290302467/

你可能感兴趣的:(人工智能,人工智能基础)