很多传统的图计算算法都存在以下几个典型问题:
针对大型图(比如社交网络和网络图)的计算问题,可能的解决方案及其不足之处具体如下:
针对大型图的计算,目前通用的图计算软件主要包括两种:
一次BSP(Bulk Synchronous Parallel Computing Model,块同步并行计算模型,又称“大同步”模型)计算过程包括一系列全局超步(所谓的超步就是计算中的一次迭代),每个超步主要包括三个组件:
谷歌公司在2003年到2004年公布了GFS、MapReduce和BigTable
谷歌在后Hadoop时代的新“三驾马车”
Pregel是一种基于BSP模型实现的并行图处理系统。
为了解决大型图的分布式计算问题,Pregel搭建了一套可扩展的、有容错机制的平台,该平台提供了一套非常灵活的API,可以描述各种各样的图计算。
Pregel作为分布式图计算的计算框架,主要用于图遍历、最短路径、PageRank计算等等。
采用消息传递模型主要基于以下两个原因:
Pregel的计算过程是由一系列被称为“超步”的迭代组成的。
在每个超步中,每个顶点上面都会并行执行用户自定义的函数,该函数描述了一个顶点V在一个超步S中需要执行的操作。
该函数可以读取前一个超步(S-1)中其他顶点发送给顶点V的消息,执行相应计算后,修改顶点V及其出射边的状态,然后沿着顶点V的出射边发送消息给其他顶点,而且,一个消息可能经过多条边的传递后被发送到任意已知ID的目标顶点上去。
这些消息将会在下一个超步(S+1)中被目标顶点接收,然后像上述过程一样开始下一个超步(S+1)的迭代过程。
在Pregel计算过程中,一个算法什么时候可以结束,是由所有顶点的状态决定的。
在第0个超步,所有顶点处于活跃状态。
当一个顶点不需要继续执行进一步的计算时,就会把自己的状态设置为“停机”,进入非活跃状态。
当一个处于非活跃状态的顶点收到来自其他顶点的消息时,Pregel计算框架必须根据条件判断来决定是否将其显式唤醒进入活跃状态。
当图中所有的顶点都已经标识其自身达到“非活跃(inactive)”状态,并且没有消息在传送的时候,算法就可以停止运行。
Pregel已经预先定义好一个基类——Vertex类:
template
class Vertex {
public:
//定义的虚函数,Computer();用户的处理逻辑在这实现
virtual void Compute(MessageIterator* msgs) = 0;
//参数顶点ID
const string& vertex_id() const;
//记录执行的超步数
int64 superstep() const;
//获取顶点关联的值
const VertexValue& GetValue();
VertexValue* MutableValue();
//出射边迭代器,获取所有的出射边
OutEdgeIterator GetOutEdgeIterator();
//发送消息
void SendMessageTo(const string& dest_vertex, const MessageValue& message);
//设为停机
void VoteToHalt();
};
在Vetex类中,定义了三个值类型参数,分别表示顶点、边和消息。每一个顶点都有一个给定类型的值与之对应。
编写Pregel程序时,需要继承Vertex类,并且覆写Vertex类的虚函数Compute()。
顶点之间的通讯是借助于消息传递机制来实现的,每条消息都包含了消息值和需要到达的目标顶点ID。用户可以通过Vertex类的模板参数来设定消息值的数据类型。
在一个超步S中,一个顶点可以发送任意数量的消息,这些消息将在下一个超步(S+1)中被其他顶点接收。
一个顶点V通过与之关联的出射边向外发送消息,并且,消息要到达的目标顶点并不一定是与顶点V相邻的顶点,一个消息可以连续经过多条连通的边到达某个与顶点V不相邻的顶点U,U可以从接收的消息中获取到与其不相邻的顶点V的ID。
Pregel计算框架在消息发出去之前,Combiner可以将发往同一个顶点的多个整型值进行求和得到一个值,只需向外发送这个“求和结果”,从而实现了由多个消息合并成一个消息,大大减少了传输和缓存的开销。
在默认情况下,Pregel计算框架并不会开启Combiner功能。
当用户打算开启Combiner功能时,可以继承Combiner类并覆写虚函数Combine()。
此外,通常只对那些满足交换律和结合律的操作才可以去开启Combiner功能。
Aggregator提供了一种全局通信、监控和数据查看的机制。
在一个超步S中,每一个顶点都可以向一个Aggregator提供一个数据,Pregel计算框架会对这些值进行聚合操作产生一个值,在下一个超步(S+1)中,图中的所有顶点都可以看见这个值。
Aggregator的聚合功能,允许在整型和字符串类型上执行最大值、最小值、求和操作,比如,可以定义一个“Sum”Aggregator来统计每个顶点的出射边数量,最后相加可以得到整个图的边的数量。
Aggregator还可以实现全局协同的功能,比如,可以设计“and” Aggregator来决定在某个超步中Compute()函数是否执行某些逻辑分支,只有当“and” Aggregator显示所有顶点都满足了某条件时,才去执行这些逻辑分支。
Pregel计算框架允许用户在自定义函数Compute()中定义操作,修改图的拓扑结构,比如在图中增加(或删除)边或顶点。
对于全局拓扑改变,Pregel采用了惰性协调机制。
对于本地的局部拓扑改变,是不会引发冲突的,顶点或边的本地增减能够立即生效,很大程度上简化了分布式编程。
在Pregel计算框架中,图的保存格式多种多样,包括文本文件、关系数据库或键值数据库等。
在Pregel中,“从输入文件生成得到图结构”和“执行图计算”这两个过程是分离的,从而不会限制输入文件的格式。
对于输出,Pregel也采用了灵活的方式,可以以多种方式进行输出。
在理想的情况下(不发生任何错误),一个Pregel用户程序的执行过程如下:
Pregel采用检查点机制来实现容错。在每个超步的开始,Master会通知所有的Worker把自己管辖的分区的状态写入到持久化存储设备。
Master会周期性地向每个Worker发送ping消息,Worker收到ping消息后会给Master发送反馈消息。
每个Worker上都保存了一个或多个分区的状态信息,当一个Worker发生故障时,它所负责维护的分区的当前状态信息就会丢失。Master监测到一个Worker发生故障“失效”后,会把失效Worker所分配到的分区,重新分配到其他处于正常工作状态的Worker集合上,然后,所有这些分区会从最近的某超步S开始时写出的检查点中,重新加载状态信息。
在一个Worker中,它所管辖的分区的状态信息是保存在内存中的。分区中的顶点的状态信息包括:
在每个超步中,Worker会对自己所管辖的分区中的每个顶点进行遍历,并调用顶点上的Compute()函数,在调用时,会把以下三个参数传递进去:
在Pregel中,为了获得更好的性能,“标志位”和输入消息队列是分开保存的。
对于每个顶点而言,Pregel只保存一份顶点值和边值,但是,会保存两份“标志位”和输入消息队列,分别用于当前超步和下一个超步。
如果一个顶点V在超步S接收到消息,那么,它表示V将会在下一个超步S+1中(而不是当前超步S中)处于“活跃”状态。
当一个Worker上的一个顶点V需要发送消息到其他顶点U时,该Worker会首先判断目标顶点U是否位于自己机器上。
如果目标顶点U在自己的机器上,就直接把消息放入到与目标顶点U对应的输入消息队列中。
如果发现目标顶点U在远程机器上,这个消息就会被暂时缓存到本地,当缓存中的消息数目达到一个事先设定的阈值时,这些缓存消息会被批量异步发送出去,传输到目标顶点所在的Worker上。
Master的主要作用:
Master与Worker的交互:
Master在内部运行了一个HTTP服务器来显示图计算过程的各种信息。用户可以通过网页随时监控图计算执行过程各个细节:
每个用户自定义的Aggregator都会采用聚合函数对一个值集合进行聚合计算得到一个全局值。
每个Worker都保存了一个Aggregator的实例集,其中的每个实例都是由类型名称和实例名称来标识的。
在执行图计算过程的某个超步S中,每个Worker会利用一个Aggregator对当前本地分区中包含的所有顶点的值进行归约,得到一个本地的局部归约值。
在超步S结束时,所有Worker会将所有包含局部归约值的Aggregator的值进行最后的汇总,得到全局值,然后提交给Master。
在下一个超步S+1开始时,Master就会将Aggregator的全局值发送给每个Worker。
Pregel非常适合用来解决单源最短路径问题,实现代码如下:
class ShortestPathVertex
: public Vertex {
void Compute(MessageIterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())
SendMessageTo(iter.Target(),
mindist + iter.GetValue());
}
VoteToHalt();
}
};
Hama是基于BSP(BulkSynchronous Parallel)计算技术的并行计算框架,用于大量的科学计算(比如矩阵、图论、网络等)。BSP计算技术最大的优势是加快迭代,在解决最小路径等问题中可以快速得到可行解。同时,Hama提供简单的编程,比如flexible模型、传统的消息传递模型,而且兼容很多分布式文件系统,比如HDFS、Hbase等。用户可以使用现有的Hadoop集群进行Hama BSP.
现在Hama最新的版本为2012年6月31号发行的0.5.0.这是 Hama 做为 Apache 顶级项目后首次发布的版本,该版本包含两个显著的新特性,分别是消息压缩器和完整的 Google Pregel 克隆,另外在计算系统性能和可持续性上都得以提升。
Hama主要有三部分构成:BSPMaster、GroomServers 和Zookeeper。与Hadoop结构很相似,但没有通信和同步机制的部分。
Hama的集群由一个BSPMaster和多个互不关联的GroomServer作计算结点组成,HDFS和Zookeeper都可以是独立的集群。启动从BSPMaster开始,如果是master会启动BSPMaster、GroomServer两个进程,如果只是计算结点则只会启动GroomServer,启动/关闭脚本都是Master机器远程在GroomServer机器上执行。
BSPMaster 即集群的主,负责了集群各GroomServer结点的管理与作业的调度,就我所知它还存在单点的问题。相当于Hadoop的JobTracker或HDFS的NameNode。其基本作用如下:
GroomServer是一个process,通过BSPMaster启动BSP任务。每一个Groom都有BSPMaster通信,可以通过BSPMaster获取任务,报告状态。GroomServer在HDFS或者其他文件系统上运行,通常,GroomServer与与数据结点在一个物理结点上运行,以保证获得最佳性能。
Zookeeper用来管理BSPPeer的同步,用于实现BarrierSynchronisation机制。在ZK上,进入BSPPeer主要有进入Barrier和离开Barrier操作,所有进入Barrier的Peer会在zk上创建一个EPHEMERAL的node(/bsp/JobID/Superstep NO./TaskID),最后一个进入Barrier的Peer同时还会创建一个readynode(/bsp/JobID/Superstep NO./ready),Peer进入阻塞状态等待zk上所有task的node都删除后退出Barrier。
BSP(BulkSynchronous Parallel,整体同步并行计算模型)是英国计算机科学家Viliant在上世纪80年代提出的一种并行计算模型。Google发布的一往篇论文(《Pregel: A System for Large-Scale Graph Processing》)使得这一概念被更多人所认识,据说在Google 80%的程序运行在MapReduce上,20%的程序运行在Pregel上。和MapReduce一样,Google并没有开源Pregel,Apache按Pregel的思想提供了类似框架Hama。
以上内容为听华为大数据培训课程和大学MOOC上厦门大学 林子雨的《大数据技术原理与应用》课程而整理的笔记。
大数据技术原理与应用: https://www.icourse163.org/course/XMU-1002335004