Mybatis源码手记-从缓存体系看责任链派发模式与循环依赖企业级实践

一、缓存总览  

  Mybatis在设计上处处都有用到的缓存,而且Mybatis的缓存体系设计上遵循单一职责、开闭原则、高度解耦。及其精巧,充分的将缓存分层,其独到之处可以套用到很多类似的业务上。这里将主要的缓存体系做一下简单的分析笔记。以及借助Mybatis缓存体系的学习,进一步窥探责任链派发模式企业级实践,以及对象循环依赖场景下如何避免装载死循环的企业级解决方案

  先来一张之前的执行体系图:

Mybatis源码手记-从缓存体系看责任链派发模式与循环依赖企业级实践_第1张图片

 

 对照这张执行图,不难看出,其实对于一次Mybatis查询调用,即SqlSession -> SimpleExecutor/ReuseExecutor/BatchExecutor -> JDBC,其实缓存就是在SqlSession到Executor*之间做一层截获请求的逻辑。从宏观上很好理解。CachingExecutor作为BaseExecutor的一个前置增强装饰器,其增强的功能就是,判断是否命中了缓存,如果命中缓存,则不进行BaseExecutor的执行派发。

 1 public class CachingExecutor implements Executor {
 2   // BaseExecutor
 3   private final Executor delegate;
 4   public CachingExecutor(Executor delegate) {
 5     this.delegate = delegate;
 6     delegate.setExecutorWrapper(this);
 7   }
 8   @Override
 9   public  List query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql)
10       throws SQLException {
11     Cache cache = ms.getCache();
12     if (cache != null) {
13       flushCacheIfRequired(ms);
14       if (ms.isUseCache() && resultHandler == null) {
15         ensureNoOutParams(ms, boundSql);
16         List list = (List) tcm.getObject(cache, key);
17         if (list == null) {
18           list = delegate.query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
19           tcm.putObject(cache, key, list); // issue #578 and #116
20         }
21         return list;
22       }
23     }
24     // 如果未命中缓存则向BaseExecutor派发
25     return delegate.query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
26   }
27 }

所以由此来看,mybatis的缓存是先尝试命中CachingExecutor的二级缓存,如果未命中,则派发个BaseExecutor,下来才会去尝试命中一级缓存。由于一级缓存比较简单,我们先来看一级缓存。

二、一级缓存概览

之前执行器的那一节讲过,Mybatis的执行器和SqlSession都是一对一的关系

1 public class DefaultSqlSession implements SqlSession {
2     // ...
3   private final Executor executor;
4     // ...
5 }

而每个执行器里边用一个成员变量来做缓存容器

1 public abstract class BaseExecutor implements Executor {
2     // ...
3   protected PerpetualCache localCache;
4     // ...
5 }

那么也就是说,一旦SqlSession关闭,即对象销毁,必然BaseExecutor对象销毁,所以一级缓存容器跟着销毁。由此可以推到出:一级缓存是SqlSession级别的缓存。也就是要命中一级缓存,必须是同一个SqlSession,而且未关闭。

再来看一下一级缓存是如何设置缓存的:

 1 public abstract class BaseExecutor implements Executor {
 2   protected PerpetualCache localCache;
 3   @Override
 4   public  List query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler) throws SQLException {
 5     BoundSql boundSql = ms.getBoundSql(parameter);
 6     CacheKey key = createCacheKey(ms, parameter, rowBounds, boundSql);
 7     return query(ms, parameter, rowBounds, resultHandler, key, boundSql);
 8   }
 9   @Override
10   public  List query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
11     ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId());
12     if (closed) {
13       throw new ExecutorException("Executor was closed.");
14     }
15     if (queryStack == 0 && ms.isFlushCacheRequired()) {
16       clearLocalCache();
17     }
18     List list;
19     try {
20       queryStack++;
21       list = resultHandler == null ? (List) localCache.getObject(key) : null;
22       if (list != null) {
23         handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
24       } else {
25         list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
26       }
27     } finally {
28       queryStack--;
29     }
30     if (queryStack == 0) {
31       for (DeferredLoad deferredLoad : deferredLoads) {
32         deferredLoad.load();
33       }
34       // issue #601
35       deferredLoads.clear();
36       if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
37         // issue #482
38         clearLocalCache();
39       }
40     }
41     return list;
42   }
43 }

通过这一段源码,可以看到,是在第6行去构建缓存key,在第21行尝试获取缓存。构建缓存key,取决于四个维度:MappedStatement(同一个statementId)、parameter(同样的查询参数)、RowBounds(同样的行数)、BoundsSql(同样的SQL),加上上边SqlSession的条件,一级缓存的命中条件为:相同的SqlSession、statementId、parameter、行数、Sql,才能命中一级缓存

这里在说一句题外话,就是当mybatis与Spring集成时,SqlSession的管理就交给Spring框架了,每次Mybatis的查询都会由Spring框架新建一个Sqlsession供mybatis用,看起来一级缓存永远失效。解决办法就是给查询加上事务,当加上事务的时候,Spring框架会保证在一个事务里边只提供给mybatis同一个SqlSession对象。

再看下一级缓存何时会被刷新掉,来上源码:

 1 public abstract class BaseExecutor implements Executor {
 2   protected PerpetualCache localCache;
 3   @Override
 4   public void close(boolean forceRollback) {
 5     try {
 6       try {
 7         rollback(forceRollback);
 8       } finally {
 9         if (transaction != null) {
10           transaction.close();
11         }
12       }
13     } catch (SQLException e) {
14       log.warn("Unexpected exception on closing transaction.  Cause: " + e);
15     } finally {
16       transaction = null;
17       deferredLoads = null;
18       localCache = null;
19       localOutputParameterCache = null;
20       closed = true;
21     }
22   }
23   @Override
24   public int update(MappedStatement ms, Object parameter) throws SQLException {
25     ErrorContext.instance().resource(ms.getResource()).activity("executing an update").object(ms.getId());
26     if (closed) {
27       throw new ExecutorException("Executor was closed.");
28     }
29     clearLocalCache();
30     return doUpdate(ms, parameter);
31   }
32   @Override
33   public  List query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
34     if (queryStack == 0 && ms.isFlushCacheRequired()) {
35       clearLocalCache();
36     }
37     if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
38       clearLocalCache();
39     }
40   }
41   @Override
42   public void commit(boolean required) throws SQLException {
43     clearLocalCache();
44   }
45 
46   @Override
47   public void rollback(boolean required) throws SQLException {
48     if (!closed) {
49       try {
50         clearLocalCache();
51         flushStatements(true);
52       } finally {
53         if (required) {
54           transaction.rollback();
55         }
56       }
57     }
58   }
59 
60   @Override
61   public void clearLocalCache() {
62     if (!closed) {
63       localCache.clear();
64       localOutputParameterCache.clear();
65     }
66   }

对于这段源码,清除缓存的场景,着重关注一下clearLocalCache的调用的地方:

即触发更新操作(第29行)、配置flushCache=true(第35行)、配置缓存作用于为STATEMENT(第38行)、commit时候(第42行)、rollback时候(第50行)、执行器关闭时候(第7行)都会清除一级缓存

 

三、一级缓存对于嵌套子查询循环依赖场景的解决方案

循环依赖的情况处处可见,比如:一个班主任,下边有多个学生,每个学生又有一个对应的班主任。

对于班主任和学生这种场景,在mybatis层面属于典型的嵌套子查询。mybatis在处理嵌套查询的时候,都会查询,然后在设置属性的时候,如果发现有子查询,则发起子查询。那么,如果不加特殊干预,这种场景将会陷入设置属性触发查询的死循环中。

 1 <select id="selectHeadmasterById" resultMap="teacherMap">
 2     select * from teacher where id = #{id}
 3 select>
 4 <resultMap id="teacherMap" type="Teacher" autoMapping="true">
 5     <result column="name" property="name"/>
 6     <collection property="students" column="id" select="selectStudentsByTeacherId" fetchType="eager"/>
 7 resultMap>
 8 <select id="selectStudentsByTeacherId" resultMap="studentMap">
 9     select * from student where teacher_id = #{teacherId}
10 select>
11 <resultMap id="studentMap" type="comment">
12     <association property="teacher" column="teacher_id" select="selectHeadmasterById" fetchType="eager"/>
13 resultMap>

mybatis在处理这种情况的时候,巧妙的用了一个临时一级缓存占位符与延迟装载(不同于懒加载),解决了查询死循环的问题。这里我们直接上源码:

每次查询,如果没有命中有效缓存(即非占位符缓存)mybatis都会事先给一级缓存写入一个占位符,待数据库查询完毕后,再将真正的数据覆盖掉占位符缓存。

 1 public abstract class BaseExecutor implements Executor {
 2   protected ConcurrentLinkedQueue deferredLoads;
 3   protected PerpetualCache localCache;
 4   protected int queryStack;
 5   @Override
 6   public  List query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
 7     ErrorContext.instance().resource(ms.getResource()).activity("executing a query").object(ms.getId());
 8     if (closed) {
 9       throw new ExecutorException("Executor was closed.");
10     }
11     if (queryStack == 0 && ms.isFlushCacheRequired()) {
12       clearLocalCache();
13     }
14     List list;
15     try {
16       queryStack++;
17       list = resultHandler == null ? (List) localCache.getObject(key) : null;
18       if (list != null) {
19         handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
20       } else {
21         // 如果未获取到缓存则查库
22         list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
23       }
24     } finally {
25       queryStack--;
26     }
27     if (queryStack == 0) {
28       for (DeferredLoad deferredLoad : deferredLoads) {
29         deferredLoad.load();
30       }
31       deferredLoads.clear();
32       if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
33         clearLocalCache();
34       }
35     }
36     return list;
37   }
38 }

如上Query方法的第22行进去:

 1 private  List queryFromDatabase(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
 2     List list;
 3     // 查库之前先设置占位符缓存
 4     localCache.putObject(key, EXECUTION_PLACEHOLDER);
 5     try {
 6       list = doQuery(ms, parameter, rowBounds, resultHandler, boundSql);
 7     } finally {
 8       localCache.removeObject(key);
 9     }
10     localCache.putObject(key, list);
11     if (ms.getStatementType() == StatementType.CALLABLE) {
12       localOutputParameterCache.putObject(key, parameter);
13     }
14     return list;
15 }

BaseExecutor.queryFromDataBase方法的第6行,会触发数据库查询,紧接着会进入结果值设定的逻辑。那么首先会探测有无嵌套的子查询,如果有,则前一步主查询暂时等待,立即发起子查询。

 1   private Object getNestedQueryMappingValue(ResultSet rs, MetaObject metaResultObject, ResultMapping propertyMapping, ResultLoaderMap lazyLoader, String columnPrefix)
 2       throws SQLException {
 3     final String nestedQueryId = propertyMapping.getNestedQueryId();
 4     final String property = propertyMapping.getProperty();
 5     final MappedStatement nestedQuery = configuration.getMappedStatement(nestedQueryId);
 6     final Class nestedQueryParameterType = nestedQuery.getParameterMap().getType();
 7     final Object nestedQueryParameterObject = prepareParameterForNestedQuery(rs, propertyMapping, nestedQueryParameterType, columnPrefix);
 8     Object value = null;
 9     if (nestedQueryParameterObject != null) {
10       final BoundSql nestedBoundSql = nestedQuery.getBoundSql(nestedQueryParameterObject);
11       final CacheKey key = executor.createCacheKey(nestedQuery, nestedQueryParameterObject, RowBounds.DEFAULT, nestedBoundSql);
12       final Class targetType = propertyMapping.getJavaType();
13       // 判断当前的子查询是否和之前的某一步主查询相同
14       if (executor.isCached(nestedQuery, key)) {
15         executor.deferLoad(nestedQuery, metaResultObject, property, key, targetType);
16         value = DEFERRED;
17       } else {
18         final ResultLoader resultLoader = new ResultLoader(configuration, executor, nestedQuery, nestedQueryParameterObject, targetType, key, nestedBoundSql);
19         if (propertyMapping.isLazy()) {
20           lazyLoader.addLoader(property, metaResultObject, resultLoader);
21           value = DEFERRED;
22         } else {
23         // 立即发起子查询
24           value = resultLoader.loadResult();
25         }
26       }
27     }
28     return value;
29  }

这块重点关注第13行和第23行。其中第23行又会递归到上边BaseExecutor.query代码片段的第22行。如果getNestedQueryMappingValue代码段走的是滴15行逻辑,那么,会对应BaseExecutor.query代码片段的第28行。这块递归比较绕。下来做下通俗的解释:

首先查询班主任的主查询给一级缓存写入一个占位符缓存,然后去查库,然后设定属性,如果没有嵌套子查询,那么到这里就把设置好属性的值写入覆盖刚才一级占位符缓存。流畅完毕。

但是恰好有嵌套子查询,所以查询班主任的主查询就停在设置属性这一步,然后又发起一次查询,查询学生,然后又进入查询学生设定属性的方法。

设定学生属性方法又发现又有嵌套子查询,所以有发起一次学生查询班主任的查询操作,又进入到设定属性这块,但是发现一级缓存里边有前边住查询的站位缓存。所以没有在查库,而是将本次子查询放入延迟装载的容器里边。本次子查询结束。紧接着前一步子查询(老师查学生)结束。

紧接着查询老师的住查询设定属性完毕,并将自己的结果覆盖之前写入的站位缓存。同时启动了延时装载的逻辑,延时装载就是从一级缓存取出刚才查询老师的一级缓存数据(老师),给第二步子查询(学生)做一下MetaObject属性设置。

说的通俗一点:主查询(查班主任)执行时先写入站位缓存,紧接着挂起,发起第一个嵌套子查询(用老师查学生),紧接着该子查询再挂起,发起学生查老师,但是发现第一步主查询有一级缓存(站位缓存),那么本次子查询自动加入延迟装载队列,然后终结改子查询,等待主查询真正查完,然后延迟装载器再从缓存取出数据给第一个子查询(老师查学生)进行属性设定。

说了这么多,肯定晕车了,这里给出一个时序图:

Mybatis源码手记-从缓存体系看责任链派发模式与循环依赖企业级实践_第2张图片

总结一下:
1、占位符缓存作用在于标识与当前查询相同的前边的嵌套查询。比如:查询学生所属班主任,发现前边的主查询就是查询班主任,所以就不在执行班主任查询。等待真正的班主任查询完毕,我们只需去缓存里边取即可。所以我们不执行查询,只是将本次属性设置放入延迟装载队列即可。
2、queryStack用来记录当前查询处于嵌套的第几层。当queryStack == 0时,证明整个查询已经回归到最初的主查询上,此时,所有过程中需要延迟装载的对象,都能启动真实装载了。
3、一级缓存在解决嵌套子查询属性设置循环依赖上启至关作用。所以以及缓存是不能完全关闭的。但是我们可以设置:LocalCacheScope.STATEMENT,来让一级缓存及时清空。参见源码

 

 1   public  List query(MappedStatement ms, Object parameter, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql) throws SQLException {
 2     // ...
 3     try {
 4       queryStack++;
 5       list = resultHandler == null ? (List) localCache.getObject(key) : null;
 6       if (list != null) {
 7         handleLocallyCachedOutputParameters(ms, key, parameter, boundSql);
 8       } else {
 9         list = queryFromDatabase(ms, parameter, rowBounds, resultHandler, key, boundSql);
10       }
11     } finally {
12       queryStack--;
13     }
14     if (queryStack == 0) {
15       for (DeferredLoad deferredLoad : deferredLoads) {
16         deferredLoad.load();
17       }
18       deferredLoads.clear();
19       // 设置LocalCacheScope.STATEMENT来及时清空缓存
20       if (configuration.getLocalCacheScope() == LocalCacheScope.STATEMENT) {
21         clearLocalCache();
22       }
23     }
24     return list;
25   }

 四、二级缓存

来先上一个二级缓存的执行流程:

Mybatis源码手记-从缓存体系看责任链派发模式与循环依赖企业级实践_第3张图片

 

二级缓存是BaseExecutor的前置增强包装类CachingExecutor里边实现的,即如果从CachingExecutor里边命中缓存,则不进行BaseExecutor的派发(如下第14行)。

 1   public  List query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql)
 2       throws SQLException {
 3     Cache cache = ms.getCache();
 4     if (cache != null) {
 5       flushCacheIfRequired(ms);
 6       if (ms.isUseCache() && resultHandler == null) {
 7         ensureNoOutParams(ms, parameterObject, boundSql);
 8         @SuppressWarnings("unchecked")
 9         List list = (List) tcm.getObject(cache, key);
10         if (list == null) {
11           list = delegate. query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
12           tcm.putObject(cache, key, list); // issue #578 and #116
13         }
14         return list;
15       }
16     }
17     return delegate. query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
18   }

  11行与17行的区别在于,是否启动二级缓存,如果启动了,则将派发给BaseExecutor的查询结果写入暂存区(第12行,TransactionCacheManager),等事务提交在真正刷入二级缓存。下来我们重点来关注一下缓存的读写(第9行、第12行),这里边真正的执行对象是一系列Cache接口的实现,按职责有:线程安全、日志记录、过期清理、溢出淘汰、序列化、执行存储等等环节。而二级缓存的设计精巧之处就在于此处,完美的按职责进行责任派发,完全解耦。

  接下来我们来看下,默认情况下,缓存责任链的初始化过程:

 1   public Cache useNewCache(Classextends Cache> typeClass,
 2       Classextends Cache> evictionClass,
 3       Long flushInterval,
 4       Integer size,
 5       boolean readWrite,
 6       boolean blocking,
 7       Properties props) {
 8     Cache cache = new CacheBuilder(currentNamespace)
 9         // 这里设置默认的存储为内存
10         .implementation(valueOrDefault(typeClass, PerpetualCache.class))
11         // 这里设置默认的溢出淘汰为LRU
12         .addDecorator(valueOrDefault(evictionClass, LruCache.class))
13         .clearInterval(flushInterval)
14         .size(size)
15         .readWrite(readWrite)
16         .blocking(blocking)
17         .properties(props)
18         .build();
19     configuration.addCache(cache);
20     currentCache = cache;
21     return cache;
22   }

  然后是初始化过程:

 1   public Cache build() {
 2     setDefaultImplementations();
 3     Cache cache = newBaseCacheInstance(implementation, id);
 4     setCacheProperties(cache);
 5     // issue #352, do not apply decorators to custom caches
 6     if (PerpetualCache.class.equals(cache.getClass())) {
 7       for (Classextends Cache> decorator : decorators) {
 8         cache = newCacheDecoratorInstance(decorator, cache);
 9         setCacheProperties(cache);
10       }
11       cache = setStandardDecorators(cache);
12     } else if (!LoggingCache.class.isAssignableFrom(cache.getClass())) {
13       cache = new LoggingCache(cache);
14     }
15     return cache;
16   }
17   private Cache setStandardDecorators(Cache cache) {
18     try {
19       MetaObject metaCache = SystemMetaObject.forObject(cache);
20       if (size != null && metaCache.hasSetter("size")) {
21         metaCache.setValue("size", size);
22       }
23       if (clearInterval != null) {
24         cache = new ScheduledCache(cache);
25         ((ScheduledCache) cache).setClearInterval(clearInterval);
26       }
27       if (readWrite) {
28         cache = new SerializedCache(cache);
29       }
30       cache = new LoggingCache(cache);
31       cache = new SynchronizedCache(cache);
32       if (blocking) {
33         cache = new BlockingCache(cache);
34       }
35       return cache;
36     } catch (Exception e) {
37       throw new CacheException("Error building standard cache decorators.  Cause: " + e, e);
38     }
39   }

这里从第3、8、24、28、30、31、33行分别进行了责任装饰初始化。这种依据职责分别拆分然后嵌套的解耦方式,其实是一种很成熟的企业级责任派发设计模式。而且形如第8行的循环装饰嵌套,在很多开源框架中都能见到,比如Dubbo的AOP机制就是这样初始化的。

下边直接列一下Mybatis的二级缓存在设计上所覆盖的功能,以及各功能责任链派发的结构图:

Mybatis源码手记-从缓存体系看责任链派发模式与循环依赖企业级实践_第4张图片

 

 从上边的代码可以看出,如果设置了blocking的话,那么最外层将会包裹BlockingCache、下来是SynchronizedCache,这两个均是进行线程安全,防止缓存穿透的处理。

 1 public class BlockingCache implements Cache {
 2   private final Cache delegate;
 3   private final ConcurrentHashMap locks;
 4   public BlockingCache(Cache delegate) {
 5     this.delegate = delegate;
 6     this.locks = new ConcurrentHashMap();
 7   }
 8   @Override
 9   public void putObject(Object key, Object value) {
10     try {
11       delegate.putObject(key, value);
12     } finally {
13       releaseLock(key);
14     }
15   }
16   @Override
17   public Object getObject(Object key) {
18     acquireLock(key);
19     Object value = delegate.getObject(key);
20     if (value != null) {
21       releaseLock(key);
22     }        
23     return value;
24   }
25 }
 1 public class SynchronizedCache implements Cache {
 2   private Cache delegate;
 3   @Override
 4   public synchronized void putObject(Object key, Object object) {
 5     delegate.putObject(key, object);
 6   }
 7   @Override
 8   public synchronized Object getObject(Object key) {
 9     return delegate.getObject(key);
10   }
11 }

再看一下负责溢出淘汰的LruCache:

 1 public class LruCache implements Cache {
 2   private final Cache delegate;
 3   private Map keyMap;
 4   // 记录当溢出时,需要淘汰的Key
 5   private Object eldestKey;
 6   public void setSize(final int size) {
 7       // LinkedHashMap.accessOrder设置为true,即,每个被访问的元素会一次放到队列末尾。当溢出的时候就能从首部来移除了
 8     keyMap = new LinkedHashMap(size, .75F, true) {
 9       @Override
10       protected boolean removeEldestEntry(Map.Entry eldest) {
11         boolean tooBig = size() > size;
12         if (tooBig) {
13           eldestKey = eldest.getKey();
14         }
15         return tooBig;
16       }
17     };
18   }
19   @Override
20   public void putObject(Object key, Object value) {
21     delegate.putObject(key, value);
22     cycleKeyList(key);
23   }
24   private void cycleKeyList(Object key) {
25     keyMap.put(key, key);
26     if (eldestKey != null) {
27       delegate.removeObject(eldestKey);
28       eldestKey = null;
29     }
30   }
31 }

二级缓存就讲到这里,总结一下二级缓存件:

1、默认开启,cachEnable开关。作用于提交后。

2、相同的StatementId。

3、相同的SQL、参数、行数。

4、跨Mapper调用。

 

五、总结

  虽然在目前各种分布式应用的场景下,一级缓存和二级缓存都有很大概率的脏读现象,而被禁止,但是Mybatis对这种局部场景的设计是及其精巧的。比如,解决对象循环嵌套查询的场景设计,其实这种成熟的解决方案也被Spring(也存在对象循环注入的情景)所应用。以及责任装饰的设计,Dubbo同样在使用。其实我们能从得到很多启发,比如,对于既定的业务场景,要加入现成安全的考量,那在不侵入业务代码的前提下,我们是否也能增加一层责任装饰,进行派发来完成呢?

 

你可能感兴趣的:(Mybatis源码手记-从缓存体系看责任链派发模式与循环依赖企业级实践)