干货 | 深度强化学习国际顶会ICML-2019最新进展速览—论文PDF打包下载


今天,你AI了没?

关注:决策智能与机器学习,学点AI干货


干货 | 深度强化学习国际顶会ICML-2019最新进展速览—论文PDF打包下载_第1张图片


在国际会议上的机器学习(ICML)是一个国际学术会议上机器学习。它是机器学习和人工智能研究中高影响力的两个主要会议之一。每年的ICML中都有大量的关于强化学习的文章,其中2019总共接收强化学习论文46篇(已经是很高比例了,快接近10%),下面是本次会议文章的总结。


文章pdf版本汇总下载,本公众号回:20190517


强化学习是一种通用的学习、预测和决策范式。RL为顺序决策问题提供了解决方法,并将其转化为顺序决策问题。RL与优化、统计学、博弈论、因果推理、序贯实验等有着深刻的联系,与近似动态规划和最优控制有着很大的重叠,在科学、工程和艺术领域有着广泛的应用。

RL最近在学术界取得了稳定的进展,如Atari游戏、AlphaGo、VisuoMotor机器人政策。RL也被应用于现实场景,如推荐系统和神经架构搜索。请参阅有关RL应用程序的最新集合。希望RL系统能够在现实世界中工作,并具有实际的好处。然而,RL存在着许多问题,如泛化、样本效率、勘探与开发困境等。因此,RL远未被广泛部署。对于RL社区来说,常见的、关键的和紧迫的问题是:RL是否有广泛的部署?问题是什么?如何解决这些问题?

方法类文章

  • Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables

  • Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning

  • Quantifying Generalization in Reinforcement Learning

  • Policy Certificates: Towards Accountable Reinforcement Learning

  • Neural Logic Reinforcement Learning

  • Probability Functional Descent: A Unifying Perspective on GANs, Variational Inference, and Reinforcement Learning

  • Few-Shot Intent Inference via Meta-Inverse Reinforcement Learning

  • Calibrated Model-Based Deep Reinforcement Learning

  • Information-Theoretic Considerations in Batch Reinforcement Learning

  • Taming MAML: Control variates for unbiased meta-reinforcement learning gradient estimation

  • Option Discovery for Solving Sparse Reward Reinforcement Learning Problems

优化类文章

  • Fingerprint Policy Optimisation for Robust Reinforcement Learning

  • Collaborative Evolutionary Reinforcement Learning

  • Composing Value Functions in Reinforcement Learning

  • Task-Agnostic Dynamics Priors for Deep Reinforcement Learning

  • Policy Consolidation for Continual Reinforcement Learning

探索-利用及模型参数

  • Exploration Conscious Reinforcement Learning Revisited

  • Dynamic Weights in Multi-Objective Deep Reinforcement Learning

  • Control Regularization for Reduced Variance Reinforcement Learning

  • Dead-ends and Secure Exploration in Reinforcement Learning

  • Off-Policy Deep Reinforcement Learning without Exploration

  • Dimension-Wise Importance Sampling Weight Clipping for Sample-Efficient Reinforcement Learning

  • Extrapolating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning from Observations

  • On the Generalization Gap in Reparameterizable Reinforcement Learning

多智能体

  • Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning

  • CURIOUS: Intrinsically Motivated Multi-Task, Multi-Goal Reinforcement Learning

  • Finite-Time Analysis of Distributed TD(0) with Linear Function Approximation on Multi-Agent Reinforcement Learning

  • Maximum Entropy-Regularized Multi-Goal Reinforcement Learning

  • Multi-Agent Adversarial Inverse Reinforcement Learning

  • Grid-Wise Control for Multi-Agent Reinforcement Learning in Video Game AI

  • QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning

  • Actor-Attention-Critic for Multi-Agent Reinforcement Learning

图模型强化学习

  • TibGM: A Transferable and Information-Based Graphical Model Approach for Reinforcement Learning

  • SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning

分布式强化学习

  • Statistics and Samples in Distributional Reinforcement Learning

  • Distribution Reinforcement Learning for Efficient Exploration

应用类

  • Action Robust Reinforcement Learning and Applications in Continuous Control

  • Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

  • Learning Action Representations for Reinforcement Learning

  • The Value Function Polytope in Reinforcement Learning

  • Generative Adversarial User Model for Reinforcement Learning Based Recommendation System

其他

  • Kernel-Based Reinforcement Learning in Robust Markov Decision Processes

  • A Deep Reinforcement Learning Perspective on Internet Congestion Control

  • Reinforcement Learning in Configurable Continuous Environments

  • Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds


注:部分文章还没有在arxiv上,或者没有的请自行Google


来源:icml2019 conference

编辑:深度强化学习算法(ID:Deep-RL)



文章推荐

  • 最新 | 用深度强化学习打造不亏钱的交易机器人(附代码)

  • 博弈论的经典入门课程和资料

  • 德州扑克AI核心算法CFR在量化交易中的探索应用

  • 干货 | 深度学习在美团配送ETA预估中的探索与实践

  • 深度强化学习领域盘点系列 | 大神篇

  • 深度强化学习领域盘点系列 | 大厂机构

  • 干货 |VALSE 2019总结 --PPT 打包下载

  • 深度强化学习领域盘点系列 | 大厂机构篇

  • 量化投资之宏观篇 | 达里欧谈美国社会的矛盾及如何改良

  • NLP for Quant:使用NLP和深度学习预测股价(附代码)

  • 自动驾驶中轨迹规划的探索和挑战

  • 计算机进行通用学习的原理、方法和工程模型

  • 深度强化学习 | 用TensorFlow构建你的第一个游戏AI

  • 干货| 聊天机器人对知识图谱有哪些特殊的需求?


    

你可能感兴趣的:(干货 | 深度强化学习国际顶会ICML-2019最新进展速览—论文PDF打包下载)