- 探索TotalSegmentator:一款强大的全场景图像分割工具
计蕴斯Lowell
探索TotalSegmentator:一款强大的全场景图像分割工具项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目简介是一个开源的、基于深度学习的全场景图像分割框架。它由开发者Wasserth创建,旨在为医学影像分析、自动驾驶、遥感图像处理等多个领域提供高效且准确的像素级分类能力。该项目的亮点在于其模型的通用性和易用性,能够处理多种
- 遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
岁月如歌,青春不败
生态遥感目标检测cnntransformer遥感遥感影像
我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。一:深度卷积网络知识1.深度学习在遥感图像识别中的范式和问题2.深度学习的历史发展历程3.机器学习,深度学习等任务的基本处理流程4.卷积神经网络的基本原理5
- 近地面无人机植被定量遥感与生理参数反演
岁月如歌,青春不败
生态遥感无人机遥感植被遥感生态科学生态模型植被科学农林
一:近十年近地面无人机植被遥感文献分析,传感器选择,观测方式及质量控制要点1.1.近十余年无人机植被遥感文献分析文献分析软件VOSviewer的使用无人机植被遥感的重点研究方向、研究机构、科学家家1.2.无人机遥感的特点及与卫星遥感的差异核心优势与四大基本特点无人机与卫星遥感影像的成像方式差异异1.3.无人机传感器类型、特点及选择消费级RGB相机的简要成像几何与光谱特点多光谱相机成像类型与核心问题
- 无人机遥感技术:从植被监测到生理参数反演的进阶之路
KY_chenzhao
无人机植被遥感参数反演
在当今的生态学和农林业研究中,无人机遥感技术已经成为获取植被信息的重要手段。它不仅能够快速覆盖大面积区域,还能提供高分辨率的多光谱和高光谱数据,为植被健康监测、生长状况评估和生理参数反演提供了强大的技术支持。今天,我们就来深入了解一下无人机遥感技术在植被定量监测中的应用。一、无人机遥感:为何备受青睐?无人机遥感技术结合了无人机的灵活性和遥感传感器的高精度,能够快速获取植被的多维度信息。与传统的卫星
- 一文读懂遥感技术在农险服务全流程的应用与价值
珈和info
遥感
农业保险作为分散农业风险、提高农业生产积极性、保障农民收入稳定的重要金融政策工具,其效能直接关系到农业生产的稳定与农村经济的繁荣。然而,传统农业保险业务在信息获取、风险评估等方面的局限性日益凸显。转型之际,科技手段应如何精准地介入到农险业务的发展中来?承保、理赔、风险评估等关键业务环节能否实现从重经验到重数据的转变?已实现商业化应用的遥感技术是否能突破局限,在成本、精度、算法等维度更贴合农险业务的
- 【案例教程】无人机遥感图像拼接及处理
weixin_贾
GIS无人机遥感无人机图像拼接多光谱Photoscan软件
无人机遥感图像采集流程:无人机遥感监测介绍无人机航线规划设计无人机飞行软件操作无人机航拍一般过程无人机遥感图像拼接软件操作:Photoscan软件介绍软件基本操作与实践遥感图像拼接的一般流程遥感图像分组拼接与点云分类无人机遥感图像拼接典型案例:基于无人机航拍的单体三维建模案例基于普通相机拍摄的单体三维建模案例基于无人机航拍的正射影像制图案例利用批处理实现无人机航拍制图案例利用地面控制点提高制图精度
- 遥感影像建筑物提取
V搜xhliang0246
人工智能计算机视觉深度学习python开发语言
遥感影像建筑物提取是一项重要的地理信息处理任务,它在城市规划、环境监测、人口估算和土地覆盖制图等领域具有广泛的应用价值。以下是对遥感影像建筑物提取的详细解析:一、数据采集数据采集是建筑物提取的基础步骤。应选择具有高空间分辨率和多光谱信息的遥感影像,以确保提取的准确性。常用的遥感影像数据包括航空影像和卫星影像:航空影像:拍摄于飞机上,具有较高的空间分辨率,适用于小区域的建筑物提取。卫星影像:拍摄于卫
- 【语义分割专题文章】
BoostingIsm
Segmentationpython
本栏聚焦在语义分割的相关算法,专栏内文章的代码均已实现。一、数据篇【遥感】【道路】篇:【语义分割】【专题系列】一、MassachusettsRoadsDataset马萨诸塞州道路数据集获取二、CNN篇Unet(2015):【语义分割】【专题系列】二、Unet语义分割代码实战PSPNet(2017):【语义分割】【专题系列】三、PSPNet语义分割代码实战Linknet(2017)FPN(Featu
- 无人机遥感在农林信息提取中的实现方法与GIS融合制图教程
岁月如歌,青春不败
生态遥感无人机农业科学林业科学GIS制图遥感生态学
遥感技术作为一种空间大数据手段,能够从多时、多维、多地等角度,获取大量的农情数据。数据具有面状、实时、非接触、无伤检测等显著优势,是智慧农业必须采用的重要技术之一。一:综合态势分析1.1研究区及作物品种分析(1)形态指标分析(2)生理生化指标分析(3)胁迫指标分析(4)产量指标分析(5)综合分析1.2无人机平台分析:析目前常用于农林行业的无人机平台。1.3无人机机载传感器分析:析目前常用于农林行业
- 无人机图像拼接数据在GIS中的处理与分析、可视化与制图;无人机航拍;无人机生态环境监测、图像处理与GIS数据分析
WangYan2022
遥感生态无人机图像处理数据分析ArcGIS生态环境监测
ArcGIS作为地理信息系统领域最主流的GIS平台软件,空间数据处理和分析功能强大,十分适用于地表空间监测数据的读写、管理、分析与可视化。本教程融合无人机生态环境监测技术和ArcGIS数据分析技术,通过具体案例分析与软件操作实践,详细介绍包括无人机多源遥感影像数据采集(可见光、多光谱、激光雷达等)、影像数据拼接、空间数据编辑、空间数据分析、空间数据专题制图等流程的一条完整作业“流水线”,期望能够为
- 如何训练自己的数据集之——无人机视觉定位数据集,视觉定位,无人机视觉定位数据集无人机图像的空间分辨率
计算机c9硕士算法工程师
数据集遥感类数据集无人机类数据集无人机卫星影像空间无人机视觉定位数据集遥感影像视觉定位
无人机视觉定位数据集,将无人机拍摄的地面俯视图与相应的遥感影像进行匹配,可以实现无人机的精确快速定位,且不会产生误差累积,能作为当前无人机组合导航系统的重要补充,无人机影像收集自国内多个地区,涵盖不同地形特征和大部分国内地区;匹配的底图影像则是从谷歌地图获取的卫星图像。数据集旨在通过提供多样化的数据来支持无人机视觉定位模型的训练和测试。该数据集包含6,742幅无人机图像和11幅卫星影像。无人机图像
- 农业信息技术知识点(一)
虫洞没有虫
农业信息技术重点总结考研笔记课程设计其他
第一章1.信息是什么?信息是信息源所发生的各种信号和消息经过传递被人们所感知、接受、认识和理解的内容的统称。2.信息技术是什么?信息技术是指获取、处理、传递、存储、使用信息的技术,是能够扩展人们的信息功能的技术。3.信息采集技术,信息处理技术,信息传递技术,信息控制技术①信息采集技术:是指能有效地扩展人类感觉器官的感知域、灵敏度、分辨力和作用范围的技术,包括传感、测量、识别和遥感遥测技术。②信息传
- GEE 训练教程——基于Sentinel-2数据的SAVI 和 NDVI 图层添加到地图上的可视化分析
此星光明
GEE教程训练开发语言sentinelgeesavindvi可视化教程
目录简介指数函数expression(expression,map)Arguments:Returns:Image代码解释代码结果简介GEE训练教程——基于Sentinel-2数据的SAVI和NDVI图层添加到地图上的可视化分析指数SAVI(Soil-AdjustedVegetationIndex)和NDVI(NormalizedDifferenceVegetationIndex)都是用于遥感数据
- 使用U-Net处理Postdam数据集进行语义分割任务 如何从准备数据到训练和评估一个基于U-Net的模型。训练使用遥感影像分析研究语义分割数据集
计算机C9硕士_算法工程师
语义分割unet
使用U-Net处理Postdam数据集进行语义分割任务如何从准备数据到训练和评估一个基于U-Net的模型。训练使用遥感影像分析研究数据集文章目录1.安装依赖2.数据准备创建自定义的数据加载器3.模型定义4.训练模型5.可视化预测结果Postdam数据集遥感影像-语义分割数据集:Postdam数据集像素大小512*512训练图片为.tif标签图片为.tif数据集(train3678张val920张)
- 遥感数据快速使用及地物含量计算
Yolo566Q
遥感经验分享遥感
更多资讯,关注公众号:Ai科研学术社;(联系方式见文章底部)随着我国高分系列、欧比特系列、自然资源卫星系列等卫星数据的获取,以及美国Headwall、芬兰SPECIM、挪威HySpex、我国双利合谱、智科远达、中科谱光等无人机数据的兴起,遥感数据越来越易得。这些多源数据,在与典型地面点结合后,将发挥巨大的理论价值,计算出具体的地物含量信息,伴随而来的创新性成果也不胜枚举。所以,本课程将手把手,一起
- “卫星-无人机-地面”遥感数据快速使用及地物含量计算的实现方法实践
梦想的初衷~
遥感生态环境无人机遥感
在与上千学员交流过程中,发现科研、生产和应用多源遥感数据时,能快速上手,发挥数据的时效性,尽快出创新性成果,是目前的学员最迫切的需求。特别是按照“遥感数据获取-处理-分析-计算-制图”全流程的答疑解惑,是对学员最具有实际帮助意义的课程内容。针对这一情况,特设计了本课程。随着我国高分系列、欧比特系列、自然资源卫星系列等卫星数据的获取,以及美国Headwall、芬兰SPECIM、挪威HySpex、我国
- “卫星-无人机-地面”遥感数据快速使用方法
小新很忙
遥感经验分享
在与上千学员交流过程中,发现科研、生产和应用多源遥感数据时,能快速上手,发挥数据的时效性,尽快出创新性成果,是目前的学员最迫切的需求。特别是按照“遥感数据获取-处理-分析-计算-制图”全流程的答疑解惑,是对学员最具有实际帮助意义的课程内容。针对这一情况,特设计了本课程。随着我国高分系列、欧比特系列、自然资源卫星系列等卫星数据的获取,以及美国Headwall、芬兰SPECIM、挪威HySpex、我国
- AI助力精准农业:从数据到行动的智能革命
Echo_Wish
人工智能前沿技术人工智能
AI助力精准农业:从数据到行动的智能革命农业,作为人类最古老的产业,正经历着一场前所未有的智能化变革。从传统的经验种植到现代化机械农业,再到今天的人工智能(AI)精准农业,科技的每一次跃迁都在提高农业生产效率,降低资源浪费,并增强粮食安全。AI之所以能在农业中大显身手,主要依赖于数据驱动的智能决策。通过卫星遥感、无人机、传感器、气象数据等多维度信息,AI可以帮助农民精准施肥、智能灌溉、预测病虫害,
- GEE python——gee_pyccd基于连续监测变化检测(Continuous Change Detection and Classification, CCDC)
此星光明
GEE-PYTHONpython开发语言geeccdc变化检测py连续性
目录简介gee_pyccdPyCCDCCDC算法代码1代码2结果简介gee_pyccd协调在GoogleEarthEngine数据上使用PyCCD的脚本。此存储库与Google或USGS没有正式关联。gee_pyccd是一个基于GoogleEarthEngine平台的Python库,用于对遥感时间序列数据进行变化检测和趋势分析。它实现了基于连续监测变化检测(ContinuousChangeDete
- 遥感中的反演
ximenchuixuezijin
工作农业算法金山网络io
反演在遥感中是什么意思?按楼主的需求回答:一句话--遥感的本质是反演。具体解释:遥感的本质是反演,而从反演的数学来源讲,反演研究所针对的首先是数学模型。因此,遥感反演的基础是描述遥感信号或遥感数据与地表应用之间的关系模型,也就是说,遥感模型是遥感反演研究的对象。要进行遥感反演研究,首先要解决的问题是对地表遥感像元信息的地学描述。遥感像元尺度上的地学描述是十分有意义的课题,由于地球表面是一个复杂的系
- matlab神经网络遥感反演,基于BP神经网络的盐渍土盐分遥感反演模型研究
老许的花开
matlab神经网络遥感反演
采用遥感技术和BP神经网络技术,结合野外实测的盐渍土光谱特征和实验室化验的土壤含盐数据,对盐渍土盐分的遥感反演进行了模型的设计与编程实现。BP神经网络模型的预测精度在62.5%,明显高于传统统计模型的预测精度,表明BP神经网络能较好地模拟土壤含盐量与光谱数据之间的关系,可用于建立土壤盐分遥感反演模型。更多还原【Abstract】Theresearchonsalinityinversionfromr
- 遥感图像建筑房屋树木水体分割数据集labelme格式2026张5类别
FL1623863129
数据集计算机视觉人工智能深度学习
数据集格式:labelme格式(不包含mask文件,仅仅包含jpg图片和对应的json文件)图片数量(jpg文件个数):2026标注数量(json文件个数):2026标注类别数:5标注类别名称:["Tree","building","Tin_Shade","farmland","water"]每个类别标注的框数:Treecount=64782buildingcount=52980Tin_Shade
- 几种不同数据采集的概念:遥测、遥控、遥信、遥调、遥视、遥感
CServer_01
bigdata物联网
遥测、遥控、遥信、遥调、遥视、遥感、遥视:这几种技术在概念上容易混淆,在数据自动采集中常常用到,各自有不同的用途,下面加以简述:遥测(Telemetry):通过远程传输数据来监测远程系统中的各种物理量。如:电压、电流、频率等,数据通过远程系统种的传感器、PLC等方式获取后传输到远方。遥信(Teleprotection):通过远程传输信号来传递系统状态和故障信息。如:当发生故时,遥信系统可以远程传输
- 基于深度学习的遥感目标检测系统:UI界面、R-CNN模型与数据集准备
2025年数学建模美赛
R-CNN检测系统人工智能深度学习r语言cnnpythonui目标检测
一、引言遥感图像中的目标检测在很多领域,如环境监测、土地利用、城市规划、农业资源监测等方面有着广泛应用。遥感图像具有高分辨率和丰富的空间信息,但同时也带来了目标检测中的许多挑战,特别是在目标尺度变化、遮挡和复杂背景的情况下。因此,采用深度学习技术,尤其是卷积神经网络(CNN)和区域卷积神经网络(R-CNN),在遥感图像目标检测中取得了显著的成果。本文将详细介绍基于深度学习的遥感目标检测系统,使用R
- 遥感深度学习过程中图像分割的尺寸对模型训练结果的影响
司南锤
深度学习遥感深度学习人工智能
1.计算资源与显存占用大尺寸图像:需要更高的显存和计算资源,可能限制训练时的批大小(batchsize),甚至导致无法训练。解决方案:通常将大图裁剪为小尺寸的补丁(patches),例如256x256或512x512。小尺寸图像:显存占用低,但可能丢失全局上下文信息(如大面积地物分布),影响模型对复杂场景的理解。2.模型感受野与上下文信息小尺寸输入:模型感受野受限,可能无法捕捉大范围地物(如河流、
- 使用小尺寸的图像进行逐像素语义分割训练,出现样本不均衡训练效果问题
司南锤
深度学习遥感计算机视觉人工智能机器学习
在使用小尺寸图像进行逐像素语义分割训练时,确实可能出现样本不均衡问题,且这种问题可能比大尺寸图像更显著。1.小尺寸图像如何加剧样本不均衡?(1)局部裁剪导致类别分布偏差问题:遥感图像中某些类别(如道路、建筑)可能稀疏分布。小尺寸裁剪后,部分训练样本可能完全不含某些类别(例如一块纯农田的补丁),导致模型对这些类别缺乏学习机会。示例:原图中“道路”占比5%,若裁剪为256x256的小图,部分小图中可能
- 使用 rasterstats 库进行栅格与矢量数据的空间分析
xyt556_CUMT
人工智能
在地理信息系统(GIS)领域,栅格数据和矢量数据是两类常见的数据类型。栅格数据通常代表像素网格,如遥感影像或土地利用图,而矢量数据则通常表示具体的地理实体,如行政区划或土地边界。如何有效地结合这两类数据进行空间分析是许多地理研究中的关键问题。rasterstats是一个用于处理栅格和矢量数据的Python库,提供了便捷的工具来实现栅格统计、空间叠加分析等。本文将介绍如何使用rasterstats库
- 【深度学习|地学应用】遥感与深度学习:揭示梦柯冰川奥秘的前沿应用与实践解析
985小水博一枚呀
深度学习地学应用深度学习人工智能
【深度学习|地学应用】遥感与深度学习:揭示梦柯冰川奥秘的前沿应用与实践解析【深度学习|地学应用】遥感与深度学习:揭示梦柯冰川奥秘的前沿应用与实践解析文章目录【深度学习|地学应用】遥感与深度学习:揭示梦柯冰川奥秘的前沿应用与实践解析前言一、使用高分6号遥感影像结合深度学习对梦柯冰川的研究方向1.冰川边界自动化提取2.冰川变化动态监测3.冰川分类与分布特征分析二、梦柯冰川(MunkuGlacier)的
- CVPR 2024 无人机/遥感/卫星图像方向总汇(航空图像和交叉视角定位)
点云SLAM
图形图像处理深度学习计算机视觉遥感卫星图像交叉视觉定位CVPR
1、UAV、RemoteSensing、SatelliteImage(无人机/遥感/卫星图像)UnleashingUnlabeledData:AParadigmforCross-ViewGeo-Localization⭐codeRethinkingTransformersPre-trainingforMulti-SpectralSatelliteImagery⭐codeAerialLifting:
- Arcgis遥感影像建立镶嵌数据集,加载不显示,采用以下步骤,注意事项
木易GIS
arcpy遥感GISarcgisgis图像处理
Arcgis遥感影像建立镶嵌数据集,加载不显示,采用以下步骤,注意事项:(1)Footprint属性表maxPs改为5000;(2)镶嵌数据集右键属性,maxinumnumberofrasterspermasaic改为1000;(3)右键modify更改生成影像金字塔。然后重新加载图层就能显示了。
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$