- 【论文阅读】Revisiting the Assumption of Latent Separability for Backdoor Defenses
开心星人
论文阅读论文阅读
https://github.com/Unispac/Circumventing-Backdoor-Defenses摘要和介绍在各种后门毒化攻击中,来自目标类别的毒化样本和干净样本通常在潜在空间中形成两个分离的簇。这种潜在的分离性非常普遍,甚至在防御研究中成为了一种默认假设,我们称之为潜在分离性假设。基于这一假设设计的防御方法通过在潜在空间中进行聚类分析来识别毒化样本。具体来说,这些防御方法首先在
- [论文阅读] CLIP-based fusion-modal reconstructing hashing for large-scaleunsupervised cross-modal retri
2301_80732299
论文阅读
摘要随着多模态数据的激增,人们不再满足于单一的数据检索模式来获取信息。深度哈希检索算法以其存储效率高、查询速度快等优点受到广泛关注。目前,现有的无监督哈希方法普遍存在两方面的局限性:(1)现有方法不能充分捕获不同模态数据中潜在的语义相关性和共存信息,导致缺乏有效的特征和哈希编码表示来弥合多模态数据中的异构和语义差距。(2)现有的无监督方法通常构造相似矩阵来指导哈希码学习,存在不准确的相似度问题,导
- F-PointNet 论文阅读理解
咸鱼和白菜
目标检测f-pointnet点云目标检测
总述本文提出一种方法:使用成熟的2D的目标检测方法中cnn提供的regionproposal和3D的目标检测定位(也就是pointnet处理点云),将二者结合利用RGB-D映射和一个叫做锥体(Frustum)?形成一个3D的box参数进行输出。本文主要贡献就是在“一个叫做锥(Frustum)”的使用上结合2D的regionpropos和点云进行3D的分割和box的输出。为方便理解与书写,按照文中顺
- 【论文阅读笔记|EMNLP2023】DemoSG: Demonstration-enhanced Schema-guided Generation for Low-resource Event Ext
Rose sait
论文阅读笔记
论文题目:DemoSG:Demonstration-enhancedSchema-guidedGenerationforLow-resourceEventExtraction论文来源:EMNLP2023论文链接:2023.findings-emnlp.121.pdf(aclanthology.org)代码链接:https://github.com/GangZhao98/DemoSG0摘要当前大多数
- 深度学习论文阅读路线图
喜欢打酱油的老鸟
深度学习论文阅读路线图深度学习论文阅读路线图论文阅读路线图
https://www.toutiao.com/a6703859415763649031/作者:floodsun编译:ronghuaiyang这是作者一年前整理的东西,有些最新的论文没有包含进去,但是对于新手来说,入门足够了!如果你是深度学习领域的新人,你的第一个问题可能是“我该从哪些论文开始读起呢?”这就是深度学习论文的阅读路线图!这个路线图是根据下面几个规则构建的:从概要到细节从老的到最新的业
- 神经网络压缩实验-Deep-compression
无用技术研究所
首发于个人博客,结合论文阅读笔记更佳实验准备基础网络搭建为了实现神经网络的deepcompression,首先要训练一个深度神经网络,为了方便实现,这里实现一个两层卷积+两层MLP的神经网络classnet(pt.nn.Module):def__init__(self):super(net,self).__init__()self.conv1=pt.nn.Conv2d(in_channels=1,
- 【论文阅读】DeepSeek-R1:通过强化学习激励LLMs的推理能力 | DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via RL
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型DeepSeek计算论文阅读deepseekagiaillmagentcot
DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearningDeepSeek-R1:通过强化学习激励LLMs的推理能力
[email protected]目录DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcem
- 【声音场景分类--论文阅读】
繁华落尽,寻一世真情
分类论文阅读数据挖掘
1.基于小波时频图特征在声音场景分类基于小波时频图特征在声音场景分类任务中的表现2.增强增强高效音频分类网络https://arxiv.org/pdf/2204.11479v5https://github.com/Alibaba-MIIL/AudioClassfication音频分类网络如图4所示。在此阶段,主要重点是建立一个神经网络具有较大的感受野,同时保持较低的复杂性。可以将网络分解为两个主块
- 利用去雾算法实现低光增强
mytzs123
图像增强算法opencv人工智能
[论文阅读](11)ACE算法和暗通道先验图像去雾算法(Rizzi|何恺明老师)_暗通道去雾算法-CSDN博客//https://zhuanlan.zhihu.com/p/500023711?utm_id=0#include#include#include#include#include#includeusingnamespacecv;usingnamespacestd;namespace{voi
- 论文阅读【CVPR-2022】3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swappi
智尊宝人工智能社区
人工智能计算机视觉
3DShapeVariationalAutoencoderLatentDisentanglementviaMini-BatchFeatureSwappingforBodiesandFaces通过小批量特征互换实现身体和脸部的三维形状变异自动编码器潜移默化studyai.com搜索论文:3DShapeVariationalAutoencoderLatentDisentanglementviaMini
- 论文阅读笔记(9)——《A Practical Survey on Faster and Lighter Transformers》
StriveQueen
自然语言处理机器学习论文阅读笔记算法神经网络机器学习Transformer
1Abstract2Introductionrecurrentneuralnetworks(RNNs)longshort-termmemory(LSTM)networksequencetosequenceframeworkinter-attentionrelativeeffectivecontextlength(RECL)Transformer3TransformerA.EncoderB.Deco
- 【OTFS与信号处理:论文阅读1】:考虑分数多普勒的OTFS系统有效信道估计(24.01.16更新)
Cuby!
OTFS论文学习信号处理论文阅读人工智能
2023.06.05最近在研究OTFS考虑分数多普勒时信道估计与信号检测相关问题,最近精读了一篇论文,并针对论文中部分公式进行推导,故记录一下学习过程。【OTFS与信号处理:论文阅读1】EfficientChannelEstimationforOTFSSystemsinthePresenceofFractionalDoppler前言一、摘要及背景摘要分数多普勒的引入估计分数多普勒的意义研究现状二、
- 论文阅读:DeepFake-Adapter: Dual-Level Adapter for DeepFake Detection(Deepfake模型快速调参)
海拉鲁的小厨娘
读论文论文阅读
一、论文信息论文名称:DeepFake-Adapter:Dual-LevelAdapterforDeepFakeDetection作者团队:项目主页:https://github.com/rshaojimmy/DeepFake-Adapter(代码暂未开源)二、动机与创新动机:目前的deepfake检测模型泛化能力差,将其归因于过拟合于低级的伪造模式,现有的deepfake检测方法仅关注低级别的伪
- 大模型GUI系列论文阅读 DAY4:《PREDICT: Multi-Agent-based Debate Simulation for Generalized Hate Speech Detecti》
feifeikon
论文阅读
摘要虽然已经提出了一些公共基准用于训练仇恨言论检测模型,但这些基准之间的标注标准差异为模型的泛化学习带来了挑战,限制了其适用性。先前的研究提出了通过数据整合或扩充来泛化模型的方法,但在克服数据集之间的标注标准差异方面仍然存在局限性。为了解决这些挑战,我们提出了PREDICT,一种基于多代理(multi-agent)概念的仇恨言论检测新框架。PREDICT包括两个阶段:(1)PRE(基于视角的推理)
- 图神经网络系列论文阅读DAY1:《Predicting Tweet Engagement with Graph Neural Networks》
feifeikon
神经网络论文阅读人工智能
摘要翻译:社交网络是全球范围内分享内容的重要在线渠道之一。在这种背景下,预测一篇帖子在互动方面是否会产生影响,对于推动这些媒体的盈利利用至关重要。在现有研究中,许多方法通过利用帖子的直接特征来解决这一问题,这些特征通常与文本内容以及发布该帖子的用户相关。在本文中,我们认为互动的增加还与另一个关键因素相关,即社交媒体用户发布的帖子之间的语义关联。因此,我们提出了一种基于图神经网络(GraphNeur
- 大模型GUI系列论文阅读 DAY2续2:《使用指令微调基础模型的多模态网页导航》
feifeikon
论文阅读
摘要自主网页导航的进展一直受到以下因素的阻碍:依赖于数十亿次的探索性交互(通常采用在线强化学习),依赖于特定领域的模型设计,难以利用丰富的跨领域数据进行泛化。在本研究中,我们探讨了基于视觉-语言基础模型的数据驱动离线训练方法,以改进网页代理的性能。我们提出了一种名为WebGUM的指令跟随多模态代理,该代理能够同时观察网页截图和HTML页面,并输出网页导航操作,例如点击和输入文本等。WebGUM通过
- 大模型GUI系列论文阅读 DAY3:《GPT-4V(ision) is a Generalist Web Agent, if Grounded》
feifeikon
论文阅读
摘要近年来,大型多模态模型(LMMs)的发展,特别是GPT-4V(ision)和Gemini,迅速扩展了多模态模型的能力边界,不再局限于传统任务如图像描述和视觉问答。在本研究中,我们探讨了LMMs(如GPT-4V)作为通用网页代理的潜力,这类代理能够根据自然语言指令完成任意网站上的任务。我们提出了SEEACT,这是一种通用网页代理,利用LMMs的视觉理解能力,实现网页上的操作。我们在最新的MIND
- 《论文阅读》 用于产生移情反应的迭代联想记忆模型 ACL2024
365JHWZGo
情感对话论文阅读回复生成ACL2024共情回复empathetic
《论文阅读》用于产生移情反应的迭代联想记忆模型ACL2024前言简介任务定义模型架构EncodingDialogueInformationCapturingAssociatedInformationPredictingEmotionandGeneratingResponse损失函数问题前言亲身阅读感受分享,细节画图解释,再也不用担心看不懂论文啦~无抄袭,无复制,纯手工敲击键盘~今天为大家带来的是《
- 论文阅读--Qwen2&2.5技术报告
__如果
论文阅读qwen
Qwen21引言所有模型都是在超过7trilliontoken(7万亿)的高质量、大规模数据集上预训练的2Tokenizer&Model2.1Tokenizer沿用Qwen(Bai等人,2023a)的做法,我们采用了基于字节级字节对编码的相同Tokenizer所有大小的模型都采用一个共有词汇表,包含151,643个常规词元和3个控制词元2.2模型架构基于Transformer架构的大型语言模型,具
- 大模型GUI系列论文阅读 DAY3续4:《TREE SEARCH FOR LANGUAGE MODEL AGENTS》
feifeikon
语言模型人工智能自然语言处理
摘要自主代理由语言模型(LMs)驱动,已在执行诸如网页自动化等决策任务方面展示出良好前景。然而,语言模型的一个主要局限在于:它们主要针对自然语言理解和生成进行了优化,在解决现实世界的计算机任务时,难以应对多步推理、规划以及环境反馈的利用。为了解决这一问题,我们提出了一种推理时搜索算法,使语言模型代理能够在交互式网页环境中执行显式的探索和多步规划。我们的方法是一种基于最佳优先(best-first)
- DETRs with Collaborative Hybrid Assignments Training论文阅读与代码
分享总结快乐
论文阅读
关键词:协作混合分配训练【目标检测】Co-DETR:ATSS+FasterRCNN+DETR协作的先进检测器(ICCV2023)-CSDN博客摘要:在这篇论文中,作者观察到在DETR中将过少的Query分配为正样本,采用一对一的集合匹配,会导致对编码器输出的监督稀疏,严重损害编码器的区分特征学习,反之亦然,也会影响解码器中的注意力学习。为了缓解这个问题,作者提出了一种新颖的协同混合分配训练方案,名
- 大模型GUI系列论文阅读 DAY2续:《一个具备规划、长上下文理解和程序合成能力的真实世界Web代理》
feifeikon
论文阅读
摘要预训练的大语言模型(LLMs)近年来在自主网页自动化方面实现了更好的泛化能力和样本效率。然而,在真实世界的网站上,其性能仍然受到以下问题的影响:(1)开放领域的复杂性,(2)有限的上下文长度,(3)在HTML结构上的归纳偏差不足。我们提出WebAgent,一个由LLM驱动的智能代理,能够通过自我学习的方式,在真实网站上按照自然语言指令完成任务。WebAgent通过将指令提前规划,将其分解为子指
- 论文阅读笔记:AI+RPA
几道之旅
人工智能
文章目录论文题目下载地址论文摘要论文题目Challengesandopportunities:ImplementingRPAandAIinfrauddetectioninthebankingsector下载地址点击这里下载论文摘要在银行业中,将机器人流程自动化(RPA)和人工智能(AI)集成用于欺诈检测是一项重大变革,既带来了挑战,也带来了机遇。随着金融机构面临日益复杂的欺诈企图,RPA和AI成为
- 论文阅读:Deep Bilateral Learning for Real-Time Image Enhancement-google-hdrnet-slicing
SetMaker
论文阅读
项目地址:https://gitcode.com/google/hdrnethdrnet作为超分领域的经典文章,由google提出主要用来用轻量化的方法来实现高分辨率的图像生成,hdrnet结合cnn可以让更高分辨率的图像部署在板端。如图所示,原始图像比如4k图像,首先分为两个主要模块:grid和guide。grid就是对应图上面的那一条特征提取网络,具体来说,原始图像经过下采样之后,默认256分
- PenGymy论文阅读
亚里士多没有德775
论文阅读
这里发现idea被人家先发了,没办法,资料收集的不够全面,现在来学习一下这个项目这篇论文的贡献如下:总的来说,他的主要工作是构建逼真的仿真环境,然后根据这个仿真环境生成真实的靶场,使得这个智能体能够在这个真实的环境去互动。下面来逐渐解析他的工作,我尽量详细一点1、背景和动机这种项目是在网络攻防中,攻防双方攻击者处于暗面,防御者处于明面,这时候受到攻击后应急处理多少会造成损失,那么要是可以提前预测攻
- 《互联网时代教师自主成长的模式研究》论文阅读与思考2
宁超群
2.第二部分教师自主成长的模式建构,实质上是对新网师底层逻辑的描述。你认为,新网师的培训模式与传统常见的培训模式有哪些区别?这些区别有什么意义或价值?读完第二部分后,你对新网师有哪些新的认识或理解?你认为新网师目前哪些方面做得好,哪些方面做得还不够?答:我认为新网师的培训模式与传统常见的培训模式有以下区别:(1)培训对象的参与动机不同。新网师学员的参与是自觉自愿、积极主动,而传统培训更多是被迫参与
- 【定位系列论文阅读】-Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition(一)
醉酒柴柴
论文阅读学习笔记
这里写目录标题概述研究内容Abstract第一段(介绍本文算法大致结构与优点)1.Introduction介绍第一段(介绍视觉位置识别的重要性)第二段(VPR的两种常见方法,本文方法结合了两种方法)第三段(本文贡献)第四段(为证明本文方法优越性,进行的测试以及比较)2.RelatedWork相关工作第一段(介绍早期与深度学习的全局图像描述符)第二段(介绍局部关键点描述符)第三段(局部描述符可以进一
- 论文阅读笔记(十九):YOLO9000: Better, Faster, Stronger
__Sunshine__
笔记YOLO9000detectionclassification
WeintroduceYOLO9000,astate-of-the-art,real-timeobjectdetectionsystemthatcandetectover9000objectcategories.FirstweproposevariousimprovementstotheYOLOdetectionmethod,bothnovelanddrawnfrompriorwork.Theim
- 论文阅读笔记: DINOv2: Learning Robust Visual Features without Supervision
小夏refresh
论文计算机视觉深度学习论文阅读笔记深度学习计算机视觉人工智能
DINOv2:LearningRobustVisualFeatureswithoutSupervision论文地址:https://arxiv.org/abs/2304.07193代码地址:https://github.com/facebookresearch/dinov2摘要大量数据上的预训练模型在NLP方面取得突破,为计算机视觉中的类似基础模型开辟了道路。这些模型可以通过生成通用视觉特征(即无
- 周四 2020-01-09 08:00 - 24:30 多云 02h10m
么得感情的日更机器
南昌。二〇二〇年一月九日基本科研[1]:1.论文阅读论文--二小时十分2.论文实现实验--小时3.数学SINS推导回顾--O分4.科研参考书【】1)的《》看0/0页-5.科研文档1)组织工作[1]:例会--英语能力[2]:1.听力--十分2.单词--五分3.口语--五分4.英语文档1)编程能力[2]:1.编程语言C语言--O分2.数据结构与算法C语言数据结构--O分3.编程参考书1)陈正冲的《C语
- js动画html标签(持续更新中)
843977358
htmljs动画mediaopacity
1.jQuery 效果 - animate() 方法 改变 "div" 元素的高度: $(".btn1").click(function(){ $("#box").animate({height:"300px
- springMVC学习笔记
caoyong
springMVC
1、搭建开发环境
a>、添加jar文件,在ioc所需jar包的基础上添加spring-web.jar,spring-webmvc.jar
b>、在web.xml中配置前端控制器
<servlet>
&nbs
- POI中设置Excel单元格格式
107x
poistyle列宽合并单元格自动换行
引用:http://apps.hi.baidu.com/share/detail/17249059
POI中可能会用到一些需要设置EXCEL单元格格式的操作小结:
先获取工作薄对象:
HSSFWorkbook wb = new HSSFWorkbook();
HSSFSheet sheet = wb.createSheet();
HSSFCellStyle setBorder = wb.
- jquery 获取A href 触发js方法的this参数 无效的情况
一炮送你回车库
jquery
html如下:
<td class=\"bord-r-n bord-l-n c-333\">
<a class=\"table-icon edit\" onclick=\"editTrValues(this);\">修改</a>
</td>"
j
- md5
3213213333332132
MD5
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
public class MDFive {
public static void main(String[] args) {
String md5Str = "cq
- 完全卸载干净Oracle11g
sophia天雪
orale数据库卸载干净清理注册表
完全卸载干净Oracle11g
A、存在OUI卸载工具的情况下:
第一步:停用所有Oracle相关的已启动的服务;
第二步:找到OUI卸载工具:在“开始”菜单中找到“oracle_OraDb11g_home”文件夹中
&
- apache 的access.log 日志文件太大如何解决
darkranger
apache
CustomLog logs/access.log common 此写法导致日志数据一致自增变大。
直接注释上面的语法
#CustomLog logs/access.log common
增加:
CustomLog "|bin/rotatelogs.exe -l logs/access-%Y-%m-d.log 
- Hadoop单机模式环境搭建关键步骤
aijuans
分布式
Hadoop环境需要sshd服务一直开启,故,在服务器上需要按照ssh服务,以Ubuntu Linux为例,按照ssh服务如下:
sudo apt-get install ssh
sudo apt-get install rsync
编辑HADOOP_HOME/conf/hadoop-env.sh文件,将JAVA_HOME设置为Java
- PL/SQL DEVELOPER 使用的一些技巧
atongyeye
javasql
1 记住密码
这是个有争议的功能,因为记住密码会给带来数据安全的问题。 但假如是开发用的库,密码甚至可以和用户名相同,每次输入密码实在没什么意义,可以考虑让PLSQL Developer记住密码。 位置:Tools菜单--Preferences--Oracle--Logon HIstory--Store with password
2 特殊Copy
在SQL Window
- PHP:在对象上动态添加一个新的方法
bardo
方法动态添加闭包
有关在一个对象上动态添加方法,如果你来自Ruby语言或您熟悉这门语言,你已经知道它是什么...... Ruby提供给你一种方式来获得一个instancied对象,并给这个对象添加一个额外的方法。
好!不说Ruby了,让我们来谈谈PHP
PHP未提供一个“标准的方式”做这样的事情,这也是没有核心的一部分...
但无论如何,它并没有说我们不能做这样
- ThreadLocal与线程安全
bijian1013
javajava多线程threadLocal
首先来看一下线程安全问题产生的两个前提条件:
1.数据共享,多个线程访问同样的数据。
2.共享数据是可变的,多个线程对访问的共享数据作出了修改。
实例:
定义一个共享数据:
public static int a = 0;
- Tomcat 架包冲突解决
征客丶
tomcatWeb
环境:
Tomcat 7.0.6
win7 x64
错误表象:【我的冲突的架包是:catalina.jar 与 tomcat-catalina-7.0.61.jar 冲突,不知道其他架包冲突时是不是也报这个错误】
严重: End event threw exception
java.lang.NoSuchMethodException: org.apache.catalina.dep
- 【Scala三】分析Spark源代码总结的Scala语法一
bit1129
scala
Scala语法 1. classOf运算符
Scala中的classOf[T]是一个class对象,等价于Java的T.class,比如classOf[TextInputFormat]等价于TextInputFormat.class
2. 方法默认值
defaultMinPartitions就是一个默认值,类似C++的方法默认值
- java 线程池管理机制
BlueSkator
java线程池管理机制
编辑
Add
Tools
jdk线程池
一、引言
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
- 关于hql中使用本地sql函数的问题(问-答)
BreakingBad
HQL存储函数
转自于:http://www.iteye.com/problems/23775
问:
我在开发过程中,使用hql进行查询(mysql5)使用到了mysql自带的函数find_in_set()这个函数作为匹配字符串的来讲效率非常好,但是我直接把它写在hql语句里面(from ForumMemberInfo fm,ForumArea fa where find_in_set(fm.userId,f
- 读《研磨设计模式》-代码笔记-迭代器模式-Iterator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.Arrays;
import java.util.List;
/**
* Iterator模式提供一种方法顺序访问一个聚合对象中各个元素,而又不暴露该对象内部表示
*
* 个人觉得,为了不暴露该
- 常用SQL
chenjunt3
oraclesqlC++cC#
--NC建库
CREATE TABLESPACE NNC_DATA01 DATAFILE 'E:\oracle\product\10.2.0\oradata\orcl\nnc_data01.dbf' SIZE 500M AUTOEXTEND ON NEXT 50M EXTENT MANAGEMENT LOCAL UNIFORM SIZE 256K ;
CREATE TABLESPA
- 数学是科学技术的语言
comsci
工作活动领域模型
从小学到大学都在学习数学,从小学开始了解数字的概念和背诵九九表到大学学习复变函数和离散数学,看起来好像掌握了这些数学知识,但是在工作中却很少真正用到这些知识,为什么?
最近在研究一种开源软件-CARROT2的源代码的时候,又一次感觉到数学在计算机技术中的不可动摇的基础作用,CARROT2是一种用于自动语言分类(聚类)的工具性软件,用JAVA语言编写,它
- Linux系统手动安装rzsz 软件包
daizj
linuxszrz
1、下载软件 rzsz-3.34.tar.gz。登录linux,用命令
wget http://freeware.sgi.com/source/rzsz/rzsz-3.48.tar.gz下载。
2、解压 tar zxvf rzsz-3.34.tar.gz
3、安装 cd rzsz-3.34 ; make posix 。注意:这个软件安装与常规的GNU软件不
- 读源码之:ArrayBlockingQueue
dieslrae
java
ArrayBlockingQueue是concurrent包提供的一个线程安全的队列,由一个数组来保存队列元素.通过
takeIndex和
putIndex来分别记录出队列和入队列的下标,以保证在出队列时
不进行元素移动.
//在出队列或者入队列的时候对takeIndex或者putIndex进行累加,如果已经到了数组末尾就又从0开始,保证数
- C语言学习九枚举的定义和应用
dcj3sjt126com
c
枚举的定义
# include <stdio.h>
enum WeekDay
{
MonDay, TuesDay, WednesDay, ThursDay, FriDay, SaturDay, SunDay
};
int main(void)
{
//int day; //day定义成int类型不合适
enum WeekDay day = Wedne
- Vagrant 三种网络配置详解
dcj3sjt126com
vagrant
Forwarded port
Private network
Public network
Vagrant 中一共有三种网络配置,下面我们将会详解三种网络配置各自优缺点。
端口映射(Forwarded port),顾名思义是指把宿主计算机的端口映射到虚拟机的某一个端口上,访问宿主计算机端口时,请求实际是被转发到虚拟机上指定端口的。Vagrantfile中设定语法为:
c
- 16.性能优化-完结
frank1234
性能优化
性能调优是一个宏大的工程,需要从宏观架构(比如拆分,冗余,读写分离,集群,缓存等), 软件设计(比如多线程并行化,选择合适的数据结构), 数据库设计层面(合理的表设计,汇总表,索引,分区,拆分,冗余等) 以及微观(软件的配置,SQL语句的编写,操作系统配置等)根据软件的应用场景做综合的考虑和权衡,并经验实际测试验证才能达到最优。
性能水很深, 笔者经验尚浅 ,赶脚也就了解了点皮毛而已,我觉得
- Word Search
hcx2013
search
Given a 2D board and a word, find if the word exists in the grid.
The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or ve
- Spring4新特性——Web开发的增强
jinnianshilongnian
springspring mvcspring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装配置tengine并设置开机启动
liuxingguome
centos
yum install gcc-c++
yum install pcre pcre-devel
yum install zlib zlib-devel
yum install openssl openssl-devel
Ubuntu上可以这样安装
sudo aptitude install libdmalloc-dev libcurl4-opens
- 第14章 工具函数(上)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Xelsius 2008 and SAP BW at a glance
blueoxygen
BOXelsius
Xelsius提供了丰富多样的数据连接方式,其中为SAP BW专属提供的是BICS。那么Xelsius的各种连接的优缺点比较以及Xelsius是如何直接连接到BEx Query的呢? 以下Wiki文章应该提供了全面的概览。
http://wiki.sdn.sap.com/wiki/display/BOBJ/Xcelsius+2008+and+SAP+NetWeaver+BW+Co
- oracle表空间相关
tongsh6
oracle
在oracle数据库中,一个用户对应一个表空间,当表空间不足时,可以采用增加表空间的数据文件容量,也可以增加数据文件,方法有如下几种:
1.给表空间增加数据文件
ALTER TABLESPACE "表空间的名字" ADD DATAFILE
'表空间的数据文件路径' SIZE 50M;
&nb
- .Net framework4.0安装失败
yangjuanjava
.netwindows
上午的.net framework 4.0,各种失败,查了好多答案,各种不靠谱,最后终于找到答案了
和Windows Update有关系,给目录名重命名一下再次安装,即安装成功了!
下载地址:http://www.microsoft.com/en-us/download/details.aspx?id=17113
方法:
1.运行cmd,输入net stop WuAuServ
2.点击开