Day5面向对象编程2/2

继承和多态

在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类、父类或超类(Base class、Super class)。
比如,我们已经编写了一个名为Animal的class,有一个run()方法可以直接打印:

class Animal(object):
    def run(self):
        print('Animal is running...')

当我们需要编写DogCat类时,就可以直接从Animal类继承:

class Dog(Animal):
    pass

class Cat(Animal):
    pass

对于Dog来说,Animal就是它的父类,对于Animal来说,Dog就是它的子类。CatDog类似。
继承有什么好处?最大的好处是子类获得了父类的全部功能。由于Animial实现了run()方法,因此,DogCat作为它的子类,什么事也没干,就自动拥有了run()方法:

dog = Dog()
dog.run()

Cat().run()

运行结果如下:

Animal is running...
Animal is running...
class Dog(Animal):

    def run(self):
        print('Dog is running...')

class Cat(Animal):

    def run(self):
        print('Cat is running...')

再次运行,结果如下:

Dog is running...
Cat is running...

当子类和父类都存在相同的run()方法时,我们说,子类的run()覆盖了父类的run(),在代码运行的时候,总是会调用子类的run()。这样,我们就获得了继承的另一个好处:多态。
当我们定义一个class的时候,我们实际上就定义了一种数据类型。我们定义的数据类型和Python自带的数据类型,比如str、list、dict没什么两样:

a = list() # a是list类型
b = Animal() # b是Animal类型
c = Dog() # c是Dog类型

判断一个变量是否是某个类型可以用isinstance()判断:

>>> isinstance(a, list)
True
>>> isinstance(b, Animal)
True
>>> isinstance(c, Dog)
True
>>> isinstance(c, Animal)
True
>>> b = Animal()
>>> isinstance(b, Dog)
False

继承还可以一级一级地继承下来,就好比从爷爷到爸爸、再到儿子这样的关系。而任何类,最终都可以追溯到根类object,这些继承关系看上去就像一颗倒着的树。比如如下的继承树:


Day5面向对象编程2/2_第1张图片
image.png

静态语言 vs 动态语言

对于静态语言(例如Java)来说,如果需要传入Animal类型,则传入的对象必须是Animal类型或者它的子类,否则,将无法调用run()方法。
对于Python这样的动态语言来说,则不一定需要传入Animal类型。我们只需要保证传入的对象有一个run()方法就可以了:

class Timer(object):
    def run(self):
        print('Start...')

这就是动态语言的“鸭子类型”,它并不要求严格的继承体系,一个对象只要“看起来像鸭子,走起路来像鸭子”,那它就可以被看做是鸭子。
Python的“file-like object“就是一种鸭子类型。对真正的文件对象,它有一个read()方法,返回其内容。但是,许多对象,只要有read()方法,都被视为“file-like object“。许多函数接收的参数就是“file-like object“,你不一定要传入真正的文件对象,完全可以传入任何实现了read()方法的对象。


获取对象信息

基本类型都可以用type()判断:

>>> type(123)

>>> type('str')

>>> type(None)

如果一个变量指向函数或者类,也可以用type()判断:

>>> type(abs)

>>> type(a)

能用type()判断的基本类型也可以用isinstance()判断:

>>> isinstance('a', str)
True
>>> isinstance(123, int)
True
>>> isinstance(b'a', bytes)
True

并且还可以判断一个变量是否是某些类型中的一种,比如下面的代码就可以判断是否是list或者tuple:

>>> isinstance([1, 2, 3], (list, tuple))
True
>>> isinstance((1, 2, 3), (list, tuple))
True

使用dir()

如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list。

>>> dir('ABC')
['__add__', '__class__',..., '__subclasshook__', 'capitalize', 'casefold',..., 'zfill']

类似__xxx__的属性和方法在Python中都是有特殊用途的,比如__len__方法返回长度。在Python中,如果你调用len()函数试图获取一个对象的长度,实际上,在len()函数内部,它自动去调用该对象的__len__()方法,所以,下面的代码是等价的:

>>> len('ABC')
3
>>> 'ABC'.__len__()
3

剩下的都是普通属性或方法,比如lower()返回小写的字符串:

>>> 'ABC'.lower()
'abc'

仅仅把属性和方法列出来是不够的,配合getattr()setattr()以及hasattr(),我们可以直接操作一个对象的状态:

>>> class MyObject(object):
...     def __init__(self):
...         self.x = 9
...     def power(self):
...         return self.x * self.x
...
>>> obj = MyObject()
>>> hasattr(obj, 'x') # 有属性'x'吗?
True
>>> obj.x
9
>>> hasattr(obj, 'y') # 有属性'y'吗?
False
>>> setattr(obj, 'y', 19) # 设置一个属性'y'
>>> hasattr(obj, 'y') # 有属性'y'吗?
True
>>> getattr(obj, 'y') # 获取属性'y'
19
>>> obj.y # 获取属性'y'
19
>>> hasattr(obj, 'power') # 有属性'power'吗?
True
>>> getattr(obj, 'power') # 获取属性'power'
>
>>> fn = getattr(obj, 'power') # 获取属性'power'并赋值到变量fn
>>> fn # fn指向obj.power
>
>>> fn() # 调用fn()与调用obj.power()是一样的
81

操作的对象要加引号''


实例属性和类属性

由于Python是动态语言,根据类创建的实例可以任意绑定属性。
给实例绑定属性的方法是通过实例变量,或者通过self变量:

class Student(object):
    def __init__(self, name):
        self.name = name

s = Student('Bob')
s.score = 90

但是,如果Student类本身需要绑定一个属性呢?可以直接在class中定义属性,这种属性是类属性,归Student类所有:

class Student(object):
    name = 'Student'
>>> class Student(object):
...     name = 'Student'
...
>>> s = Student() # 创建实例s
>>> print(s.name) # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性
Student
>>> print(Student.name) # 打印类的name属性
Student
>>> s.name = 'Michael' # 给实例绑定name属性
>>> print(s.name) # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性
Michael
>>> print(Student.name) # 但是类属性并未消失,用Student.name仍然可以访问
Student
>>> del s.name # 如果删除实例的name属性
>>> print(s.name) # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了
Student

你可能感兴趣的:(Day5面向对象编程2/2)