NLP基本任务一:基于机器学习的文本分类

本博客参照了复旦大学计算机科学技术学院邱锡鹏教授的文章https://www.zhihu.com/question/324189960

题目:实现基于logistic/softmax regression的文本分类

  1. 参考

    1. 文本分类
    2. 《神经网络与深度学习》 第2/3章
  2. 数据集:Classify the sentiment of sentences from the Rotten Tomatoes dataset

  3. 实现要求:NumPy

  4. 需要了解的知识点:

    1. 文本特征表示:Bag-of-Word,N-gram
    2. 分类器:logistic/softmax regression,损失函数、(随机)梯度下降、特征选择
    3. 数据集:训练集/验证集/测试集的划分
  5. 实验:

    1. 分析不同的特征、损失函数、学习率对最终分类性能的影响
    2. shuffle 、batch、mini-batch

注:代码并没有严格参照要求去做,而是使用了sklearn封装好的工具。

import nltk
import pandas as pd
from nltk.corpus import stopwords
from nltk.stem.snowball import SnowballStemmer
import matplotlib.pylab as plt
%matplotlib inline

#载入数据
df_train = pd.read_csv(r'sentiment-analysis-on-movie-reviews/train.tsv',delimiter='\t')
df_test = pd.read_csv(r'sentiment-analysis-on-movie-reviews/test.tsv',delimiter='\t')
df_train.head()

#对文本数据做预处理
df_train['Phrase'] = df_train['Phrase'].apply(lambda x: x.lower())
# print(df_train['Phrase'])

#不能使用默认的停用词表,因为类似于'a'这样的字母会被去除掉,而有些项就是单单一个'a'
# stop_word = set(stopwords.words('english'))  #采用英文停用词表
# df_train['Phrase'] = df_train['Phrase'].apply(lambda x: ' '.join([word for word in x.split() if word not in stop_word]))

df_train['tokenizer_sents'] = df_train['Phrase'].apply(lambda x: nltk.word_tokenize(x))  #对句子分词
# print(df_train['tokenizer_sents'])  #输出类似[a, joke, in, the, united, states]

#提取词干
stemmer = SnowballStemmer('english')
df_train['tokenizer_sents'] = df_train['tokenizer_sents'].apply(lambda x: ' '.join([stemmer.stem(word) for word in x]))
# print(df_train['tokenizer_sents'])  #有些效果并不好,如forced被变成了forc

#划分并制作数据集
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer

X = df_train['tokenizer_sents']
y = df_train['Sentiment']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2,random_state = 1)
vect = CountVectorizer()  #可以加上不同参数:CountVectorizer(ngram_range = (1,1),analyzer = 'word',min_df = 0.001),其中ngram_range表示N元特征
X_train_df = vect.fit_transform(X_train)  #对文本进行编码
X_test_df = vect.transform(X_test)  #注意不是fit_transform
print('特征数量:',len(vect.get_feature_names()))  #特征数量: 10730

#构建不同机器学习模型
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(X_train_df,y_train)
y_pred_class = lr.predict(X_test_df)
print('LR:',metrics.accuracy_score(y_test,y_pred_class))  #LR:0.6295014737921313

from sklearn.naive_bayes import MultinomialNB
from sklearn import metrics
nb = MultinomialNB()
nb.fit(X_train_df,y_train)
# print(X_train_df)  #稀疏矩阵,如下
# (0, 635)	1
#   (1, 3495)	1
# print(X_test_df)
y_pred_class = nb.predict(X_test_df)
print('NB:',metrics.accuracy_score(y_test,y_pred_class))  #NB: 0.612392669486095

from sklearn.linear_model import SGDClassifier
sgd = SGDClassifier()
sgd.fit(X_train_df,y_train)
y_pred_class = sgd.predict(X_test_df)
print('SGD:',metrics.accuracy_score(y_test,y_pred_class))  #SGD: 0.6094771241830066

from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(X_train_df, y_train)
y_pred_class = rfc.predict(X_test_df)
print('RF:',metrics.accuracy_score(y_test, y_pred_class))  #RF: 0.6248237857234397

from xgboost import XGBClassifier
xgb = XGBClassifier()
xgb.fit(X_train_df, y_train)
y_pred_class = xgb.predict(X_test_df)
print('XGB:',metrics.accuracy_score(y_test, y_pred_class))  #XGB: 0.5396642317057542

#使用xgboost的工具衡量特征重要性
from xgboost import plot_importance
fig,ax = plt.subplots(figsize=(10,15))
plot_importance(xgb,height=0.5,max_num_features=64,ax=ax)
plt.show()

 

你可能感兴趣的:(NLP)