- 最短路算法一
halcyonfreed
算法
2024061819:33朴素版Dijkstra47:00Heap优化版1:04:00Bellman-ford最短路算法——5种!!!考察重点:不会考算法证明,这里不讲了,重点是实现+抽象1.如何建图——如何定义点边,抽象成一个图问题Prim/i/,kruskal是最小生成树算法不是prime/ai/质数1.是么时候用?方法n图的node数m边数单源:只有一个起点,求从1个点到其他所有点/第n号点
- 求任意两顶点间最短路算法及其matlab程序详解
夏天天天天天天天#
图论算法图论matlab
#################本文为学习《图论算法及其MATLAB实现》的学习笔记#################算法用途图中任意两点间最短路的求法算法思想利用求最短路的Floyd算法的思想。首先,求得最短距离矩阵;然后,求任意给定两个顶点间的最短路所包含的顶点。程序参数说明W:图的权值矩阵k1:始点k2:终点P:k1,k2之间的最短路,顶点以经过次序排列u:最短路的距离算法的matlab程
- 【图论】最短路算法
叫我胡萝北
算法图论
【图论】最短路算法文章目录【图论】最短路算法1.Dijkstra2.Bellman-Ford3.Floyd4.A*5.matlab求最短路今天是图论的学习,就从最短路算法开始叭1.DijkstraDijkstra算法是典型的单源最短路算法,即求图中一个点到其他所有点的最短路径的算法,时间复杂度O(n2)O(n^2)O(n2)Dijkstra算法算是贪心思想实现的,图不能有负权边,其核心要点为:每次
- 【数据结构】最短路径
游向大厂的咸鱼
浅谈C++数据结构算法
在图论中,最短路径问题是一个经典且重要的问题,它用于寻找两个顶点之间距离最短的路径。本文将详细介绍两种常用的最短路径算法——Dijkstra算法和Bellman-Ford算法的原理,并提供C语言代码示例,演示它们的实现方式及应用场景。一、Dijkstra算法Dijkstra算法是一种贪心算法,用于求解带有非负权值的加权图的单源最短路径问题。它的基本思想是,从起始顶点开始,逐步扩展已经找到的最短路径
- 算法基础系列第三章——图论之最短路径问题
杨枝
算法基础图论算法dijkstrabellman–fordalgorithm
详解蓝桥图论之最短路径问题关于图论知识铺垫图的定义邻接矩阵邻接表最短路算法总大纲dijkstra算法朴素版dijsktra算法(适用于稠密图)例题描述参考代码(C++版本)算法模板细节落实堆优化版dijkstra算法(适用于稀疏图)例题描述参考实现代码(C++版本)算法模板细节落实bellman-ford算法例题描述——有边数限制的最短路参考代码(C++版本)算法模板细节落实SPFA算法例题描述参
- 【备战蓝桥杯】 算法·每日一题(详解+多解)-- day11
苏州程序大白
365天大战算法算法蓝桥杯图论数据结构C++
【备战蓝桥杯】算法·每日一题(详解+多解)--day11✨博主介绍前言Dijkstra算法流程网络延迟时间解题思路Bellman-Ford算法流程K站内最便宜的航班解题思路SPFA算法K站内最便宜的航班解题思路具有最大概率的路径解题思路Floyd算法找到阈值距离内邻居数量最少的城市解题思路Johnson全源最短路径算法正确性证明解题思路点击直接资料领取✨博主介绍作者主页:苏州程序大白作者简介:CS
- 备战2023蓝桥国赛-重新理解Floyd及最短路算法总结
RCyyds
搜索与图论蓝桥杯算法图论c++
备战2023蓝桥国赛-重新理解Floyd及最短路算法总结Floyd算法最短路算法总结Floyd算法题目描述:解析:多源最短路算法Floyd,就是用动态规划来解决的。先初始化dist值,由于i和j可能相同,故i==j时要特判赋为0,因为不走也算一种方案。不同时赋值为INF。Floyd算法部分就是枚举中继节点,起点和终点,三重循环来更新dist值。时间复杂度为O(n✖n✖n)代码:#includeus
- 备战蓝桥杯—有边数限制的最短路 (bellman_ford+)——[AcWing]有边数限制的最短路
Joanh_Lan
备战蓝桥杯蓝桥杯图论算法acm竞赛
因为近期在学图,所以顺带的写一篇最短路的备战蓝桥杯文章。最短路(单源)所有边权都为正数有两种算法:1.朴素DijkstraO(n^2)2.堆优化的DijkstraO(mlogn)存在负权边有两种算法:1.Bellman-FordO(nm)2.SPFA一般O(m),最坏O(nm)今天,我来介绍一下Bellman-Ford(存在负权+有边数限制)存在负权且有边数限制——》Bellman-Ford(在我
- 备战蓝桥杯---图论之最短路Bellman-Ford算法及优化
CoCoa-Ck
图论算法
目录上次我们讲到复杂度为(n+m)logm(m为边,n为点)的迪杰斯特拉算法,其中有一个明显的不足就是它无法解决包含负权边的图。于是我们引进Bellman-Ford算法。核心:枚举所有的点,能松弛就松弛,直到所有点都不能松弛。具体过程:我们在外循环循环n-1(n为点数),然后在内循环上枚举所有的边,能松弛就松弛。到这里,肯定有许多人对它正确性怀疑,其实,我们可以知道,在外循环循环k轮后,k步以内可
- 【转载】ACM入门 .
dongfan1861
人工智能phpc/c++
初期:一.基本算法:(1)枚举.(poj1753,poj2965)(2)贪心(poj1328,poj2109,poj2586)(3)递归和分治法.(4)递推.(5)构造法.(poj3295)(6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:(1)图的深度优先遍历和广度优先遍历.(2)最短路径算法(dijkstra,bellman-ford,
- 最短路问题模版总结
Jared_devin
最短路问题Acwing算法c++图论数据结构宽度优先动态规划深度优先
目录思维导图Dijkstra(朴素)思路:代码如下:Dijkstra(堆优化)代码如下:Bellman-Ford思路:对于串联效应的解释:(也就是为什么需要备份数组)代码如下:SPFA思路:为什么和BF算法的判断不一样:代码如下:SPFA判负环思路:代码如下:Floyd编辑思路:代码如下:复习小结~~符号:n为点数,m为边数思维导图(来自y总)注:1.朴素Dijkstra适用于稠密图,堆优化Dij
- 图(高阶数据结构)
GG_Bond20
数据结构数据结构算法c++
目录一、图的基本概念二、图的存储结构2.1邻接矩阵2.2邻接表三、图的遍历3.1广度优先遍历3.2深度优先遍历四、最小生成树4.1Kruskal算法4.2Prim算法五、最短路径5.1单源最短路径-Dijkstra算法5.2单源最短路径-Bellman-Ford算法5.3多源最短路径-Floyd-Warshall算法一、图的基本概念图是由顶点集合和边的集合组成的一种数据结构,记作有向图与无向图在有
- 图论 理论以及相关题目题解的小结
芋圆西米露
【图论】吸吸吸国宝镇帖目录【图论】理论题解【搜索】【并查集】【最小生成树】【最短路】【拓扑排序】【二叉树】【简单图】【最小割】理论图论入门一图论入门二图论入门三图论入门四图论入门五图论入门六图论入门七-最小生成树图论入门八-Kruskal算法图论入门九-Prim算法求最短路径的四种方法(Dijkstra,Floyd,Bellman-Ford,SPFA算法)并查集入门(普通并查集+带删除并查集+关系
- Bellman-Ford算法——解决负权边
3分人生
图论
Bellman-ford算法时间复杂度为O(n*m)虽然比dijkstra算法稍微慢点但可以解决带有负权边的图,核心代码只有4行for(i=1;idis[u[j]]+w[j])dis[v[j]]>dis[u[j]]+w[j];上面代码中,外层循环一共循环了n-1次(n为顶点数),内层循环了m次(m为边的个数),即枚举了每一条边,dis数组和Dijkstra算法一样,用来记录源点到其余各个顶点的最短
- Peter算法小课堂—Dijkstra最短路算法
Peter Pan was right
算法
大家好,我们人见人爱、花见花开、车见车爆胎的PeterPan来啦,hia~hia~hia。今天,我们今天来学习毒瘤的最短路算法啦。啊这……什么是Dijkstra算法?长文警告⚠正经点啊手算样例大家思考一下,你在手算样例的时候,你是怎么计算的,总结一下规律。Dijkstra在大多数最短路算法中(好像只学了一个),Dijkstra算法是最常用、效率最高的一个。他是解决单源多汇问题的,单源多汇问题简称S
- 计算机网络——网络层(2)
学编程的小程
手刃计算机网络计算机网络
计算机网络——网络层(2)小程一言专栏链接:[link](http://t.csdnimg.cn/ZUTXU)网络层——控制平面概述路由选择转发表路由协议路由信息的交换小结路由选择算法常见的路由选择算法距离矢量路由算法工作原理优缺点分析链路状态路由算法基本工作原理优缺点分析链路状态路由算法工作原理优缺点分析最短路径算法Dijkstra算法Bellman-Ford算法最短路径小结小结小程一言我的计算
- 基础算法--搜索与图论(2)
this.xxxx
总结算法图论java
文章目录最短路单源最短路dijkstra算法(朴素)dijkstra算法(堆优化)存在负权边Bellman-Ford算法SPFA多源汇求最短路Flyod最小生成树Prim(朴素版)Krusal算法二分图染色法匈牙利算法最短路n表示点数量m:边数量稠密图:m和n^2是一个级别的稀疏图:m和n一个级别**单源最短路:**一个点到其他点的最短距离所有边权重都是正数:朴素Dijkstra算法n^2,堆优化
- 搜索与图论第六期 最短路问题
娇娇yyyyyy
图论
前言最短路问题真的很重要很重要希望大家都能够完全掌握所有最短路算法!!一、最短路问题的分类Dijkstra:Dijkstra算法是一种著名的图算法,主要用于求解有权图中的单源最短路径问题。它由荷兰计算机科学家艾兹赫尔·戴克斯特拉(EdsgerWybeDijkstra)在1956年首次提出。Dijkstra算法的核心思想是通过以下步骤逐步构建最短路径树:初始化:创建一个空白的最短路径字典,其中每
- 备战蓝桥杯算法整合
Knock man
C/C++竞赛笔记数据结构算法acm竞赛
整合这一段时间备战蓝桥杯学习的算法,方便复习!!向国一冲刺算法目录整合这一段时间备战蓝桥杯学习的算法,方便复习!!向国一冲刺六倍法判断素数欧拉筛01背包完全背包多重度背包Floyd-Warshall(多源最短路)Dijkstra(单源最短路)Bellman-Ford最短路算法最大公约数最小公倍数分解质因数全排列(递归)拓扑排序并查集二分算法二分答案尺取法折半枚举线段树线段树乘加法混合高精度加法高精
- 【数学建模】图论模型
自律版光追
数学建模数学建模图论最大流最短路最小生成树NetworkXpython
文章目录图的基础理论及networkx简介图的基本概念图的表示及Networkx简介图的表示NetworkX简介最短路算法及其Python实现固定起点到其余各点的最短路算法每对顶点间的最短路算法最短路应用最小生成树算法及其networkx实现基本概念最小生成树算法最小生成树应用匹配问题最大流最小费用问题基本概念最小费用流问题PageRank算法复杂网络简介复杂网络概况图的基础理论及networkx
- Dijsktra算法理解笔记
本卡
笔记算法笔记
Dijsktra算法理解笔记学习了柳神的笔记感谢柳神Dijkstra算法是处理图问题中的最短路径的问题最短路径问题可以大致分为两个方向单源最短路径全局最短路径以此为基准可以将最短路径算法这样划分:单源最短路径Dijkstra:不能求负权边Bellman-Ford:可求负SPFA:可求负。是2的优化全局最短路径Floyed:可求负。其中注意:点到点可以使用深度优先遍历下面将着重分析Dijsktra算
- Codeforces Round 918 (Div. 4)G题二维dijkstra
DBWG
CF算法算法图论
(读本文前需知dijkstra求最短路算法)目录目标:难点:本题方法:AC代码:题目:Problem-G-Codeforces目标:本题是求1到n的最短路难点:本题的路径长度(即权值)是距离*自行车slowness这就使得最短路很难求,比如第一个样例,就是绕到城市3选到slowness最小的自行车然后去终点最小本题方法:用ans[i]来表示城市i到终点n的最小长度(很巧妙,看后面的变换去理解原因吧
- 手撸golang 基本数据结构与算法 图的最短路径 贝尔曼-福特算法
老罗话编程
缘起最近阅读>(【日】石田保辉;宫崎修一)本系列笔记拟采用golang练习之贝尔曼-福特算法贝尔曼-福特(Bellman-Ford)算法是一种在图中求解最短路径问题的算法。最短路径问题就是在加权图指定了起点和终点的前提下,寻找从起点到终点的路径中权重总和最小的那条路径。摘自>【日】石田保辉;宫崎修一流程给定若干顶点,以及顶点间的若干条边,寻找从指定起点from到指定终点to的最小权重路径设定fro
- java回溯算法、最短路径算法、最小生成树算法
武昌库里写JAVA
高手面试算法java
回溯算法回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。最短路径算法从某顶点出发,沿图的边到达另一顶点所经过的路径中,各边上权值之和最小的一条路径叫做最短路径。解决最短路的问题有以下算法,Dijkstra算法,Bellman-Ford算法,Floyd算法和SPFA算法等。最小生成树算法现在假设有一个很实际的问题:
- Bellman-ford算法
貌美不及玲珑心,贤妻扶我青云志
ACM日记算法
目录算法分析有边数限制的最短路算法分析问题:为什么Dijkstra不能使用在含负权的图中?Dijkstra算法的3个步骤找到当前未标识的且离源点最近的点t对t号点点进行标识用t号点更新其他点的距离反例:结果:dijkstra算法在图中走出来的最短路径是1->2->4->5,算出1号点到5号点的最短距离是2+2+1=5,然而还存在一条路径是1->3->4->5,该路径的长度是5+(-2)+1=4,因
- 简单最短路径算法
WangLi&a
单源最短路径全源最短路径负环启发式搜索拓扑排序强连通分量图论
前言图的最短路径算法主要包括:有向无权图的单源最短路径宽度优先搜索算法(bfs)有向非负权图的单源最短路径迪杰斯特拉算法(Dijkstra)有向有权图的单源最短路径贝尔曼福特算法(Bellman-Ford)最短路径快速算法(SPFA)有向有权图的多源最短路径弗洛伊德算法(Floyd)负环约翰逊算法(Johnson)有向非负权图的单源k短路径:迪杰斯特拉算法(Dijkstra)有向非负权图的单源汇k
- 算法导论复习(八)| 基本图算法
brilliantgby
算法算法
文章目录最小生成树kruskal算法prim算法单源最短路径松弛三角不等式bellman-ford算法dijkstra算法差分约束所有结点对的最短路径问题递归表达式Floyd-Warshall算法johnson算法权重图:图中的每条边都带有一个权重的图。权重值通常以权重函数ω:E→R给出。邻接表权重值ω(u,v)存放在u的邻接链表结点中。邻接矩阵邻接矩阵A[u][v]=ω(u,v)。若(u,v)不
- 图的导航-最短路径算法-深度优先遍历
不是颜
数据结构算法深度优先
介绍最短路径:从起点开始访问所有的路径,到达终点的路径有多条,其中路径的权值最短的一条则为最短路径。最短路径算法有深度优先遍历、广度优先遍历、Bellman-Ford算法、弗洛伊德算法、SPFA算法、迪杰斯特拉算法等。而本篇讲的是利用深度优先遍历(DSF)求最短路径。深度优先遍历(DSF)先来看下面的例子,起点为A,终点为E。A-C-E路径是最短的,权值为13。首先从A出发,有三个分支,先选择一个
- 最短路问题 | 单源最短路 | 条条大路通罗马,有人生来在罗马
一根老麻花
手撕算法算法c++数据结构spfabellman-forddijkstra动态规划
文章目录Dijkstra算法特点朴素版本堆优化版Bellman-ford算法特点有边数限制的最短路题目描述程序代码SPFA算法特点spfa求最短路题目描述问题分析程序代码穷游?“穷”游题目描述输入输出问题分析程序代码Dijkstra算法特点Dijkstra是基于贪心的策略简单最短路径问题:如果i到j的最短路经过w,那么从i到j的最短距离一定为从i到w的最短距离加上从w到j的最短距离。Dijkstr
- 基础算法--搜索与图论(1)
this.xxxx
总结算法图论深度优先
文章目录DFS和BFSDFS搜索应用n-皇后问题树和图的存储DFS遍历BFS遍历应用拓扑排序DFS和BFSDFS,深度优先搜索,数据结构:stack空间:Oh不具有最短性BFS,宽度优先搜索queueO2^h具有最短性(当图的所有边权重都是相同的时,bfs搜到的一定是最短路,只有这时候才能用bfs求最短路,一般情况下都用最短路算法求最短路,最短路算法的时间复杂度比较高)DFS搜索应用n-皇后问题将
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep