SSD feature map 选择解析

针对不同的物体大小(Object Scales),传统的方法将图像转化成不同的大小,分别处理然后把结果综合。
这里ssd从不同的卷积层利用featuremap,可以达到同样的效果
生成预测的方法
如下图所示:

SSD feature map 选择解析_第1张图片
ssd-feature map.png

最左侧是选取的神经网络中的一个“图像”层
每个层做3个处理:
(1)生成loc预测,厚度4 x box
(2)生成类别预测,厚度21(类别) x box
(3)生成priorbox,这里面有个box大小范围、宽长比(2 3)等等

prior_box_param {
    min_size: 276.0
    max_size: 330.0
    aspect_ratio: 2
    aspect_ratio: 3
    flip: true
    clip: true
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
  }

ssd实例说明
(1)基本网络

Layer name "图像"规格
input 3x300x300
conv1_1 64x300x300
conv1_2 64x300x300
pool_1 64x150x150
conv2_1 128x150x150
conv2_2 128x150x150
pool_2 128x75x75
conv3_1 256x75x75
conv3_2 256x75x75
conv3_3 256x75x75
pool_3 256x38x38
conv4_1 512x38x38
conv4_2 512x38x38
conv4_3 512x38x38
pool_4 5121919
conv5_1 512x19x19
conv5_2 512x19x19
conv5_3 512x19x19
----------- VGG昏割线
fc6(convolution kernel dilation) 1024x19x19
fc7 1024x19x19
conv6_1 256x19x19
conv6_2 512x10x10
conv7_1 128x10x10
conv7_2(10-3+1*2)/2+1 256x5x5
conv8_1 128x5x5
conv8_2 256x3x3
pool6 25611

选取提取特征的层

Layer name "图像"规格 特征生成 特征说明
conv4_3 512x38x38 mbox-loc conv 38x38x12(=3x4)
mbox-conf conv 38x38x63(=3x21)
prior-box box min:30
fc7 1024x19x19 mbox-loc conv 19x19x24(=6x4)
mbox-conf conv 19x19x126(=6x21)
prior-box box min:60 max:114
conv6_2 512x10x10 mbox-loc conv 10x10x24(=6x4)
mbox-conf conv 10x10x126(=6x21)
prior-box box min:114 max:168
conv7_2 256x5x5 mbox-loc conv 5x5x24(=6x4)
mbox-conf conv 5x5x126(=6x21)
prior-box box min:168 max:222
conv8_2 256x3x3 mbox-loc conv 3x3x24(=6x4)
mbox-conf conv 3x3x126(=6x21)
prior-box box min:222 max:276
pool_6 256x1x1 mbox-loc conv 1x1x24(=6x4)
mbox-conf conv 1x1x126(=6x21)
prior-box box min:276 max:330
SSD feature map 选择解析_第2张图片
loc-conf.png

所以对一张图一共提供:
38x38x3+(19x19+10x10+5x5+3x3+1x1)x6=7308个detection
每个detection包括4个值表示位置和21个值表示每个类的概率

为了实现ssd,原生的caffe是不行的
要定义新层:
Normalize
Permute
MultiBoxLoss等
一篇定义新层的方法如下所示:
http://blog.csdn.net/kuaitoukid/article/details/41865803

设计feature map##

已知一个神经网络,选特定层,再后面加:

layer {
  name: "conv6_2_mbox_loc"
  type: "Convolution"
  bottom: "conv6_2"
  top: "conv6_2_mbox_loc"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 24/////////////////////////////////////////////////////////////////////n*4
    pad: 1/////////////////////////////////////////////////////////////////////这样feature size由所选层长宽决定
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv6_2_mbox_loc_perm"
  type: "Permute"
  bottom: "conv6_2_mbox_loc"
  top: "conv6_2_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv6_2_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv6_2_mbox_loc_perm"
  top: "conv6_2_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv6_2_mbox_conf"
  type: "Convolution"
  bottom: "conv6_2"
  top: "conv6_2_mbox_conf"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 126/////////////////////////////////////////////////////////////////////n*种类
    pad: 1/////////////////////////////////////////////////////////////////////这样feature size由所选层长宽决定
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "conv6_2_mbox_conf_perm"
  type: "Permute"
  bottom: "conv6_2_mbox_conf"
  top: "conv6_2_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv6_2_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv6_2_mbox_conf_perm"
  top: "conv6_2_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv6_2_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv6_2"
  bottom: "data"
  top: "conv6_2_mbox_priorbox"
  prior_box_param {
    min_size: 114.0 /////////////////////////////////////////////////////////////////////适配图像
    max_size: 168.0
    aspect_ratio: 2
    aspect_ratio: 3
    flip: true
    clip: true
    variance: 0.1
    variance: 0.1
    variance: 0.2
    variance: 0.2
  }
}

你可能感兴趣的:(SSD feature map 选择解析)