Olap全称为在线联机分析应用,是一种对于多维数据分析查询的解决方案。 典型的Olap应用场景包括销售、市场、管理等商务报表,预算决算,经济报表等等。
最早的Olap查询工具是发布于1970年的Express,然而完整的Olap概念是在1993年由关系数据库之父 Edgar F.Codd 提出,伴随而来的是著名的“twelve laws of online analytical processing”. 1998年微软发布 Microsoft Analysis Services, 并且在早一年通过OLE DB for OLAP API引入MDX查询语言,2001年微软和Hyperion发布的XML for Analysis 成为了事实上的OLAP查询标准。 如今,MDX已成为与SQL旗鼓相当的OLAP 查询语言,被各家OLAP厂商先后支持。
Olap Cube是一种典型的多维数据分析技术,Cube本身可以认为是不同维度数据组成的dataset,一个Olap Cube 可以拥有多个维度(Dimension),以及多个事实(Fact or Measure)。用户通过Olap工具从多个角度来进行数据的多为分析。通常认为Olap包括三种基本的分析操作: 上卷(rollup)、下钻(drill down)、切片切块(slicing and dicing),原始数据经过聚合以及整理后变成一个或多个维度的视图。
传统OLAP根据数据存储方式的不同分为ROLAP(relational olap)以及MOLAP(multi-dimension olap)
ROLAP 以关系模型的方式存储用作多为分析用的数据,优点在于存储体积小,查询方式灵活,然而缺点也显而易见,每次查询都需要对数据进行聚合计算,为了改善短板,ROLAP使用了列存、并行查询、查询优化、位图索引等技术
MOLAP 将分析用的数据物理上存储为多维数组的形式,形成CUBE结构。维度的属性值映射成多维数组的下标或者下标范围,事实以多维数组的值存储在数组单元中,优势是查询快速,缺点是数据量不容易控制,可能会出现维度爆炸的问题
近二十年内,ROLAP技术随着MPP并行数据库技术的发展,尤其是列存技术的支持下,实现了分析能力大幅度的跨越提升,同时伴随着内存成本的进一步降低,单节点内存扩展性增强,集群单节点的查询性能实现了飞跃,内存数据库的实用性跨上了一个新台阶,这些技术进步共同作用的结果是类似的技术基本覆盖了TB级别的数据分析需求。 Hadoop以及相关大数据技术的出现提供了一个几近无限扩展的数据平台,在相关技术的支持下,各个应用的数据已突破了传统OLAP所能支持的容量上界。每天千万、数亿条的数据,提供若干维度的分析模型,大数据OLAP最迫切所要解决的问题就是大量实时运算导致的响应时间迟滞。
Kylin 是一个Hadoop生态圈下的MOLAP系统,是ebay大数据部门从2014年开始研发的支持TB到PB级别数据量的分布式Olap分析引擎。其特点包括:
Kylin典型的应用场景如下:
* 用户数据存在于Hadoop HDFS中,利用Hive将HDFS文件数据以关系数据方式存取,数据量巨大,在500G以上
* 每天有数G甚至数十G的数据增量导入
* 有10个以内较为固定的分析维度
Kylin的核心思想是利用空间换时间,在数据ETL导入OLAP引擎时提前计算各维度的聚合结果并持久化保存, 由于Kylin查询方面制定了多种灵活的策略,进一步提高空间的利用率,使得这样的平衡策略在应用中是值得采用的。
Kylin 作为一个Olap引擎完成了从数据源抓取数据,ETL到自己的存储引擎,提供REST服务等一系列工作,其架构如图所示:
Kylin 的生态圈包括:
Kylin的多维计算主要是体现在OLAP Cube的计算。Cube由多个Cuboid组合而成,Cuboid上的数据是原始数据聚合的数据,因此创建Cube可以看作是在原始数据导入时做的一个预计算预处理的过程。Kylin的强大之处在于充分利用了Hadoop的MapReduce并行处理的能力,高效处理导入的数据。
Kylin的数据来自于Hive,并作为一个Hive的加速器希望最终的查询SQL类似于直接在Hive上查询。因此Kylin在建立Cube的时候需要从Hive获取Hive表的元数据。虽然有建立Cube的过程,但是并不想对普通的查询用户暴露Cube的存在。
Kylin创建Cube的过程如下:
Kylin与传统的OLAP一样,无法应对数据Update的情况(更新数据会导致Cube的失效,需要重建整个Cube)。面对每天甚至每两个小时这样固定周期的增量数据,Kylin使用了一种增量Cubing技术来进行快速响应。
Kylin的Cube可以根据时间段划分成多个Segment。在Cube第一次Build完成之后会有一个Segment,在每次增量Build后会产生一个新的Segment。增量Cubing依赖已有的Cube Segments和增量的原始数据。增量Cubing的步骤和新建 Cube的步骤类似,Segment之间以时间段进行区分。
增量Cubing所需要面对的原始数据量更小,因此增量Cubing的速度时非常快的。然而随着Cube Segments的数目增加,一定程度上会影响到查询的进行,所以在Segments数目到一定数量后可能需要进行Cube Segments的合并操作,合并是一个异步操作,并不会影响到正常的查询服务。合并操作步骤如下:
Kylin Cube的存储代价以及计算代价都是比较大的, 传统OLAP的维度爆炸的问题Kylin也一样会遇到。 Kylin提供给用户一些优化措施,包括减轻维度爆炸的问题,提高数据查询效率等:
Group Dimensions (维度组)
Hierachy Dimension, 一系列具有层次关系的Dimension组成一个Hierachy, 比如年、月、日组成了一个Hierachy, 在Cube中,如果不设置Hierarchy, 会有 年、月、日、年月、年日、月日 6个cuboid, 但是设置了Hierarchy之后Cuboid增加了一个约束,希望低Level的Dimension一定要伴随高Level的Dimension 一起出现。设置了Hierachy Dimension 能使得需要计算的维度组合减少一半。
Kylin针对维度字典以及维度表快照采用了特殊的压缩算法,保证存储在Hbase以及内存中的数据尽可能的小。 由于DataCube中会出现非常多的重复的维度值,因此直观的做法就是利用数据字典的方式将维度值映射成ID, Kylin中采用了Trie树的方式对维度值进行编码
Kylin 采用了HypeLogLog的方式来计算Distinc Count。 好处是速度快,缺点是结果是一个近似值,会有一定的误差。 具体的算法可见Paper: http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf 本文不再赘述。
Kylin支持标准的ANSI SQL, Kylin的SQL语法解析依赖于另一个开源数据管理框架 Apache Calcite, Calcite即之前的Optiq,可以说是一个没有存储模块的数据库,即不管理数据存储、不包含数据处理的算法,不包含元信息的存储。因此它非常适合来做一个应用到存储引擎之间的中间层。在Calcite的基础之上只要为存储引擎写一个专用的适配器(Adapter)即可形成一个功能丰富的支持DML的“类数据库”。目前Calcite已在Hive、Drill、Phoenix项目中被使用。
Kylin完成了一个针对性的Calcite Adapter,在Calcite完成SQL解析,形成语法树(AST)之后,Kylin定义语法树各个节点的执行规则,以及查询优化准则。Calcite在遍历语法树节点后生成一个Kylin描述查询模型的SQL Digest, Kylin会为此Digest去判断是否有匹配的Cube。如果有与查询匹配的Cube,即选择一个查询代价最小的Cube进行查询(Kylin Cube的查询代价计算目前是一个开放接口,可以根据维度数目,可以根据数据量大小来计算Cost)
Kylin目前的多维数据存储引擎是HBase, Kylin利用了HBase的Coprocessor机制在HBase的Region Server完成部分聚合以及过滤操作,在Hbase Scan时提前进行计算,利用HBase多个Region Server的计算能力加速Kylin的SQL查询。
Kylin 可以说是与市面上流行的RTOLAP走了一条完全不同的道路。 Kylin在如何快速求得预计算结果,以及优化查询解析使得更多的查询能用上预计算结果方面在优化,后续Kylin的版本会优化预计算速度,使得Kylin可以变成一个近似实时的分析引擎。然而其缺点就是SQL支持方面可能在一定程度上会有所牺牲,存储开销也会比较大, 而像Presto,SparkSQL,Hawq等是着重于优化查询数据的过程环节,像一些其它的数据仓库一样,使用列存、压缩、并行查询等技术,优化查询。这种方案的好处就在于扩展性强、能适配更广泛的查询, 然而由于每次的聚合计算是 On Fly的,因此性能上相较Kylin还是有所不如。
在网易,Kylin作为大数据平台的Olap查询模块,可以为公司的各种分析类需求以及应用提供服务。所有数据存在Hadoop Hive 上的数据都能够通过Kylin Olap 引擎进行加速查询。在公司内部Kylin作为一个统一平台,与各产品的数据仓库进行接驳。
目前Kylin的部署架构如下:
Kylin集群由多个查询节点以及控制节点组成。 控制节点唯一,负责集群项目、任务调度与Cube增删查改。 多个查询节点前用Nginx做负载均衡,后段节点可按需水平扩容。前端可同时支持JDBC与ODBC的客户端查询
在Kylin上线前,我们针对NRPT的报表业务进行过性能对比,对比内容在相同的数据下、Kylin查询与Mondrian 结合Oracle的查询比较。 我们选取了数据量较大的DataStream报表业务进行了测试:
再看Kylin的吞吐量,利用Haproxy进行请求转发后随着Kylin服务器的增加吞吐量的表现:
根据测试结果可见,Kylin OLAP在性能上能达到秒级,并且在查询吞吐量可以通过增加查询服务器来达到线性扩展的目的
原生的Kylin 是需要部署在一个统一底层的Hadoop、Hive、HBase集群之上的。而网易内部的大数据平台由于各种原因,分为了多个Hadoop集群、各应用会在不同的Hadoop集群上建立Hive数据仓库。 最原始而自然的想法就是在每一个Hadoop环境上部署一套Kylin服务来满足不同的需求,但是集群资源管理、计算资源调度、管理运维的复杂性都会是一个比较突出的问题。例如用户数据在A机房的Hive上,而A机房的Hadoop集群并没有足够的计算资源来保证Kylin Olap的高效运行。因此根据公司内部实际的大数据平台分布情况及机房建设情况,将Kylin打造成一个公司内统一的服务平台是一个更好的选择。Olap小组对开源版本的Kylin进行了二次开发,并将改进补丁提交了社区。目前的改进主要包括:
综合分析现实的场景之后,我们选择了公司内最大的hadoop集群作为Kylin Olap的计算引擎集群,保证有充足的存储以及计算资源。 HBase采用一个独立的集群,避免Hbase查询和Hadoop集群任务之间的互相干扰。数据源Hive允许用户自定义,目前已支持同Hadoop集群下不同Hive 以及不同Hadoop集群下的不同Hive节点使用Kylin Olap服务。根据用户数据仓库的实际配置情况可能会出现跨集群的数据源抽取计算, 由于公司同城机房有专线网络,数据仓库Hive里的源数据量也远小于Kylin实际的聚合后的数据存储(存于Hbase,数据量大小一般为数据源Hive中的10倍以上), 因此可认为这样的开销可以认为带来的影响不大,并且在我们的测试中得到了印证。
为了让Kylin更快更好的融入到大数据平台中,OLAP小组已计划在不久之后全面与猛犸大数据平台进行打通和整合, Kylin Olap 将深度内嵌于猛犸,用户可以基于猛犸平台完成Kylin Olap的简化管理工作。猛犸平台对接控制节点,作为数据模型师的操作入口
网易有数会成为Kylin Olap的一个重要的分析师入口,有数将Kylin Olap作为一个单独的数据源进行支持。已有的以及潜在的Hive查询客户可以轻松的将报表迁移到Kylin Olap,使得大数据量下的交互式报表分析称为可能。