- 论文阅读笔记:Graph Matching Networks for Learning the Similarity of Graph Structured Objects
游离态GLZ不可能是金融技术宅
知识图谱机器学习深度学习人工智能
论文做的是用于图匹配的神经网络研究,作者做出了两点贡献:证明GNN可以经过训练,产生嵌入graph-leve的向量可以用于相似性计算。作者提出了一种新的基于注意力的跨图匹配机制GMN(cross-graphattention-basedmatchingmechanism),来计算出一对图之间的相似度评分。(核心创新点)论文证明了该模型在不同领域的有效性,包括具有挑战性的基于控制流图(control
- 图神经网络实战(9)——GraphSAGE详解与实现
盼小辉丶
图神经网络从入门到项目实战图神经网络GNNpytorch
图神经网络实战(9)——GraphSAGE详解与实现0.前言1.GraphSAGE原理1.1邻居采样1.2聚合2.构建GraphSAGE模型执行节点分类2.1数据集分析2.2构建GraphSAGE模型3.PinSAGE小结系列链接0.前言GraphSAGE是专为处理大规模图而设计的图神经网络(GraphNeuralNetworks,GNN)架构。在科技行业,可扩展性是推动系统增长的关键驱动力。因此
- 机器学习AI/ML/CV/NLP/GNN算法公式汇总Latex代码
rockingdingo
tensorflow大数据自然语言处理算法深度学习机器学习
图学习和LinkPrediction任务KnowledgeGraphLinkPredictionEquationsAndLatexCodehttp://www.deepnlp.org/blog/knowledge-graph-link-prediction小样本学习和零样本学习公式的Latex代Few-ShotLearningAndZero-ShotLearningEquationsLatexCo
- 图神经网络:拓扑数据分析的新时代
Jason_Orton
神经网络数据分析人工智能
随着图数据的广泛应用,图神经网络(GraphNeuralNetwork,GNN)作为一种强大的深度学习工具,逐渐成为机器学习领域中的一颗新星。图数据在许多现实世界问题中无处不在,诸如社交网络、交通网络、分子结构、推荐系统等都可以被建模为图结构。图神经网络通过直接处理图结构数据,能够更好地捕捉节点之间的关系信息,从而在众多任务中展现出了优异的性能。本文将深入探讨图神经网络的基本原理、常见的算法、应用
- DeepSeek 高阶应用技术详解(4)
Evaporator Core
#DeepSeek快速入门DeepSeek进阶开发与应用deepseek
1.引言在前三篇中,我们探讨了DeepSeek的基础功能、分布式训练、模型优化、模型解释性、超参数优化以及AutoML的应用。本篇将深入探讨DeepSeek在时间序列分析、图神经网络(GNN)和推荐系统中的应用。这些领域是深度学习的前沿方向,具有广泛的实际应用价值。2.DeepSeek在时间序列分析中的应用2.1时间序列分析简介时间序列分析是处理时间相关数据的重要技术,广泛应用于金融、气象、医疗等
- <深入浅出图神经网络> 读书笔记
数学工具构造器
GNN
文章目录笔记GNN代码chapter5|GCN分析TODO改代码得到的结论chapter6|GraphSage分析TODO去今年刚出就买了.一查豆瓣评分比我想的还低(我这种小白都能看出一些错误),有1说1对于入门还是可以的,至少能知道GNN大概的发展路线,如图卷积→\rightarrow→GCN→\rightarrow→GNN等.如果小白直接上手GNN啥的,连图滤波,空域频域等概念都不知道,也只能
- IGModel——提高基于 GNN与Attention 机制的方法在药物发现中的实用性
Jackie_AI
计算机视觉stablediffusion自然语言处理语言模型Imagen
IGModel——提高基于GNN与Attention机制的方法在药物发现中的实用性导言深度学习在药物发现(发现治疗药物)领域的应用以及传统方法面临的挑战。药物(尤其是我们将在本文中讨论的被称为抑制剂的药物)通过与在人体中发挥不良功能的蛋白质结合并改变这些蛋白质的功能来发挥治疗效果。因此,在设计药物时,必须优化这些结合的亲和力和药理特性,并准确预测蛋白质与药物之间的相互作用。近年来,人们尤其提倡使用
- arXiv综述论文“Graph Neural Networks: A Review of Methods and Applications”
硅谷秋水
自动驾驶
arXiv于2019年7月10日上载的GNN综述论文“GraphNeuralNetworks:AReviewofMethodsandApplications“。摘要:许多学习任务需要处理图数据,该图数据包含元素之间的丰富关系信息。建模物理系统、学习分子指纹、预测蛋白质界面以及对疾病进行分类都需要一个模型从图输入学习。在其他如文本和图像之类非结构数据学习的领域中,对提取的结构推理,例如句子的依存关系
- 基于图的推荐算法(12):Handling Information Loss of Graph Neural Networks for Session-based Recommendation
阿瑟_TJRS
前言KDD2020,针对基于会话推荐任务提出的GNN方法对已有的GNN方法的缺陷进行分析并做出改进主要针对lossysessionencoding和ineffectivelong-rangedependencycapturing两个问题:基于GNN的方法存在损失部分序列信息的问题,主要是在session转换为图以及消息传播过程中的排列无关(permutation-invariant)的聚合过程中造
- GNN会议&期刊汇总(人工智能、机器学习、深度学习、数据挖掘)
Bunny_Ben
科研方法&心得人工智能机器学习深度学习笔记神经网络数据挖掘
会议【NeurIPS】全称ConferenceonNeuralInformationProcessingSystems(神经信息处理系统大会),机器学习和计算神经科学领域的顶级学术会议,CCFA。【ICLR】全称InternationalConferenceonLearningRepresentations(国际学习表征会议),深度学习顶会。【AAAI】由人工智能促进协会AAAI(Associat
- 图神经网络实战(18)——消息传播神经网络
盼小辉丶
图神经网络从入门到项目实战pytorch深度学习图神经网络
图神经网络实战(18)——消息传播神经网络0.前言1.消息传播神经网络2.实现MPNN框架小结系列链接0.前言我们已经学习了多种图神经网络(GraphNeuralNetworks,GNN)变体,包括图卷积网络(GraphConvolutionalNetwork,GCN)、图注意力网络(GraphAttentionNetworks,GAT)和GraphSAGE等。在本节中,我们将对这些变体GNN结构
- [Scene Graph] 图神经网络的核心方法——Message Passing
风中摇曳的小萝卜
SceneGraph神经网络深度学习机器学习人工智能
GNN中的MessagePassing方法解析一、GNN中是如何实现特征学习的?深度学习方法的兴起是从计算图像处理(ComputerVision)领域开始的。以卷积神经网络(CNN)为代表的方法会从邻近的像素中获取信息。这种方式对于结构化数据(structureddata)十分有效,例如,图像和体素数据。但是,CNN的处理方式对于类似图(graph)数据则并不适用。对于一个图而言,类似图像像素的邻
- GNN的理解难点:一种不同于传统神经网络的复杂性
小桥流水---人工智能
人工智能深度学习机器学习算法神经网络人工智能深度学习
图神经网络(GNN)已经成为深度学习领域的一颗新星,它在处理图形数据方面显示出了巨大的潜力和优势。然而,许多研究者和开发者发现GNN比传统的神经网络更难以理解和掌握。本文将探讨GNN的理解难点,以及它与传统神经网络在概念和实现上的主要差异。一、图数据的复杂性首先,GNN之所以难以理解,一个重要原因在于它处理的数据结构——图。图是一种复杂的数据结构,包含节点(node)和边(edge),这些节点和边
- 图神经网络GNN的前世今生
小桥流水---人工智能
Python程序代码深度学习人工智能神经网络人工智能深度学习
GNN图神经网络(GraphNeuralNetwork,简称GNN)已经成为处理图形结构数据的一种强大工具,广泛应用于社交网络分析、知识图谱、推荐系统等领域。在本文中,我们将深入探讨图神经网络的历史背景、关键的发展阶段以及未来可能的发展方向。一、背景介绍图(Graph)是一种数据结构,由节点(Node)和连接节点的边(Edge)组成。在许多现实世界的应用中,数据自然地呈现出图形结构,如社交网络中的
- 计算机毕业设计hadoop+spark知识图谱高考分数预测系统 高考志愿推荐系统 高考可视化大屏 高考大数据 高考数据分析 高考爬虫 大数据毕业设计
计算机毕业设计大全
开发技术hadoopsparkspringbootvue.jsPython爬虫、机器学习、深度学习mybatis-plusneo4j知识图谱图数据库mysql协同过滤算法(基于物品、基于用户模式)MLP模型SVD神经网络CNN、KNN、GNN卷积神经网络预测算法阿里云平台百度AI平台阿里大于短信平台lstm模型创新点4种机器学习推荐算法进行高考志愿学校推荐1种深度学习模型进行高考分数线预测hado
- 金融贷款风险预测:使用图神经网络模型进行违约概率评估
从零开始学习人工智能
金融神经网络人工智能
要使用PyTorch和GNN(图神经网络)来预测金融贷款风险,并加入注意力机制,我们首先需要构建一个贷款风险预测的图数据集。然后,我们将设计一个基于注意力机制的GNN模型。以下是一个简化的代码示例,演示了如何使用PyTorch和PyTorchGeometric(一个流行的图神经网络库)来实现这一点。请注意,这只是一个起点,并且您可能需要根据您的具体需求进行调整。首先,安装必要的库:bash复制代码
- Michael Bronstein 最新几何深度学习综述:超越 WL 和原始消息传递的 GNN
人工智能与算法学习
大数据算法编程语言python机器学习
如何突破基于WL测试和消息传递机制的GNN的性能瓶颈?且看几何深度学习旗手、牛津大学教授MichaelBrostein如是说。编辑丨陈彩娴来源|AI科技评论图可以方便地抽象关系和交互的复杂系统。社交网络、高能物理、化学等研究领域都涉及相互作用的对象(无论是人、粒子还是原子)。在这些场景下,图结构数据的重要性日渐凸显,相关方法取得了一系列初步成功,而一系列工业应用使得图深度学习成为机器学习方向的热门
- Michael Brostein 最新几何深度学习综述:超越 WL 和原始消息传递的 GNN
人工智能学家
大数据算法编程语言python机器学习
来源:前沿科技编译:OGAI编辑:陈彩娴如何突破基于WL测试和消息传递机制的GNN的性能瓶颈?且看几何深度学习旗手、牛津大学教授MichaelBrostein如是说。图可以方便地抽象关系和交互的复杂系统。社交网络、高能物理、化学等研究领域都涉及相互作用的对象(无论是人、粒子还是原子)。在这些场景下,图结构数据的重要性日渐凸显,相关方法取得了一系列初步成功,而一系列工业应用使得图深度学习成为机器学习
- [论文精读]FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation
夏莉莉iy
论文精读人工智能深度学习学习图论分类笔记
论文网址:https://arxiv.org/abs/2205.12465论文代码:https://github.com/Wayfear/FBNETGEN英文是纯手打的!论文原文的summarizingandparaphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用!目录1.省流版1.1.心得1.2.论文总结图2.论文逐段精读2.1.Abstr
- [代码复现]FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation
夏莉莉iy
代码复现深度学习人工智能学习图论笔记nlp
仅提供ABIDE数据集复现步骤,很简单。代码已经很新了目录1.论文资料2.代码复现步骤及可能存在的问题2.1.环境配置2.2.代码运行1.论文资料(1)论文原文:[2205.12465]FBNETGEN:Task-awareGNN-basedfMRIAnalysisviaFunctionalBrainNetworkGeneration(arxiv.org)(2)论文代码:GitHub-Wayfea
- DeepMind加持的GNN框架正式开源,TensorFlow进入图神经网络时代
Python数据挖掘
pythonpython深度学习神经网络
谷歌在垃圾邮件检测、流量估计以及YouTube内容标签等环境中使用了一种强大的工具GNN(图神经网络)。11月18日,谷歌联合DeepMind对外开源TensorFlowGNN工具,助力流量预测、谣言和假新闻检测、疾病传播建模、物理模拟等领域的基础研究。11月18日,谷歌联合DeepMind发布了TensorFlowGNN(图神经网络)。目前,谷歌已经在诸如垃圾邮件检测、流量估计以及YouTube
- Google刚刚推出了图神经网络Tensorflow-GNN
新加坡内哥谈技术
神经网络tensorflow人工智能
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/在当今数字化的世界里,对象及其之间的复杂关系构成了无数的网络,例如交通网络、生产网络、知
- Datawhale组队学习GNN-task04 数据完整存储与内存的数据集类+节点预测与边预测任务实践
79f3c66c2fe7
DataWhale开源学习资料:https://github.com/datawhalechina/team-learning-nlp/tree/master/GNN6.1数据完全存于内存的数据集类学习在PyG中如何自定义一个数据完全存于内存的数据集类。InMemoryDataset基类简介根文件夹(root)raw_dirprocessed_dir传递的三个函数:transformpre_tra
- 论文笔记:NIPS 2020 Graph Contrastive Learning with Augmentations
饮冰l
图弱监督数据挖掘机器学习神经网络深度学习
前言本文主要提出在图对比学习大框架下的图数据增强的若干方法。概括来说,本文提出了一种图对比学习框架来无监督的完成图表示学习,首先作者提出了基于各种先验信息的四种图数据增强方法。然后,作者分析了在四种不同的图数据增强条件下,不同组合对多个数据集的影响:半监督、无监督、迁移学习以及对抗性攻击。作者为GNN的预训练提出了基于图数据增强的对比学习框架来解决图中数据异质性的挑战,本文的主要贡献如下:作者提出
- Graph Contrastive Learning with Augmentations
tutoujiehegaosou
Graph笔记
GraphCL学习笔记Abstract提出GNN对自监督学习和pre-training较少。本文提出了GraphCL框架,用于学习图的无监督表示。设计四种类型的数据增强,在不同的settings(learningrate,batchsize,dropout参数)下,研究这四种增强对不同数据集的影响。Introduction大多数graph-level的任务场景,GNN都是在监督的情况下进行端到端的
- Task02 消息传递图神经网络
沫2021
参考链接:https://github.com/datawhalechina/team-learning-nlp/blob/master/GNN/Markdown%E7%89%88%E6%9C%AC/4-%E6%B6%88%E6%81%AF%E4%BC%A0%E9%80%92%E5%9B%BE%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C.md一、引言消息传递范式是一种聚
- A.关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph L)【一】
汀、人工智能
图计算图学习图论图神经网络人工智能
图学习图神经网络算法专栏简介:主要实现图游走模型(DeepWalk、node2vec);图神经网络算法(GCN、GAT、GraphSage),部分进阶GNN模型(UniMP标签传播、ERNIESage)模型算法等,完成项目实战专栏链接:图学习图神经网络算法专栏简介:含图算法(图游走模型、图神经网络算法等)原理+项目+代码实现+比赛前人栽树后人乘凉,本专栏提供资料:快速掌握图游走模型(DeepWal
- ECE755_gnn图神经网络(附完整工程)
_max_max
GNN神经网络人工智能深度学习fpga
ECE755_gnn图神经网络(附完整工程)ECE755课程要求任务1完成:题目要求MS1代码:仿真任务二完成题目要求MS2代码:仿真总结ECE755ECE755_sp23是加拿大渥太华大学(UniversityofOttawa)计算机工程系(SchoolofElectricalEngineeringandComputerScience)的一个研究生课程,涵盖了图神经网络(GraphNeuralN
- 《Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs》阅读笔记
斯曦巍峨
GraphLearning异构图GNN
文章概述作者指出许多流行的GNN模型在泛化到异构图上时性能都很差,为此,作者确定了一组能够帮助提升GNN在异构图上性能的设计:自嵌入和邻居嵌入分离聚合更高阶的邻居将中间层的表示组合作为最后的表示作者将这些理念应用到了自己设计的H2GCN\text{H}_{2}\text{GCN}H2GCN上,半监督结点分类任务(semi-supervisednodeclassificationtask)的实验结果
- 人工智能福利站,初识人工智能,图神经网络学习,第一课
普修罗双战士
人工智能专栏人工智能神经网络学习
作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。欢迎点赞✍评论⭐收藏人工智能领域知识链接专栏人工智能专业知识学习一图神经网络专栏文章目录初识人工智能(图神经网络)一、图神经网络学习(1)01.什么是图神经网络(GNN)?02.图神经网络与传统神经网络的区别是什么?03.图神经网络有哪些主要的应用领域?04.请
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23