???? 这是第 42 篇不掺水的原创,想要了解更多,请戳上方蓝色字体:政采云前端团队 关注我们吧~
本文首发于政采云前端团队博客:webpack-dev-middleware 源码解读
https://www.zoo.team/article/webpack-dev-middleware
Webpack 的使用目前已经是前端开发工程师必备技能之一。若是想在本地环境启动一个开发服务,大家只需在 Webpack 的配置中,增加 devServer (https://www.webpackjs.com/configuration/dev-server/) 的配置来启动。devServer 配置的本质是 webpack-dev-server 这个包提供的功能,而 webpack-dev-middleware 则是这个包的底层依赖。
截至本文发表前,webpack-dev-middleware 的最新版本为 [email protected]
,本文的源码来自于此版本。本文会讲解 webpack-dev-middleware 的核心模块实现,相信大家把这篇文章看完,再去阅读源码,会容易理解很多。
要回答这个问题,我们先来看看如何使用这个包:
const wdm = require('webpack-dev-middleware');
const express = require('express');
const webpack = require('webpack');
const webpackConf = require('./webapck.conf.js');
const compiler = webpack(webpackConf);
const app = express();
app.use(wdm(compiler));
app.listen(8080);
通过启动一个 Express (http://www.expressjs.com.cn/) 服务,将 wdm(compiler)
的结果通过 app.use
方法注册为 Express 服务的中间函数。从这里,我们不难看出 wdm(compiler)
的执行结果返回的是一个 express
的中间件。它作为一个容器,将 webpack
编译后的文件存储到内存中,然后在用户访问 express
服务时,将内存中对应的资源输出返回。
熟悉 webpack
的同学都知道,webpack
可以通过 watch mode (https://www.webpackjs.com/configuration/watch/) 方式启动,那为何我们不直接使用此方式来监听资源变化呢?答案就是,webpack
的 watch mode
虽然能监听文件的变更,并且自动打包,但是每次打包后的结果将会存储到本地硬盘中,而 IO 操作是非常耗资源时间的,无法满足本地开发调试需求。
而 webpack-dev-middleware 拥有以下几点特性:
以 watch mode
启动 webpack
,监听的资源一旦发生变更,便会自动编译,生产最新的 bundle
在编译期间,停止提供旧版的 bundle
并且将请求延迟到最新的编译结果完成之后
webpack
编译后的资源会存储在内存中,当用户请求资源时,直接于内存中查找对应资源,减少去硬盘中查找的 IO 操作耗时
本文将主要围绕这三个特性和主流程逻辑进行分析。
让我们先来看下 webpack-dev-middleware 的源码目录:
...
├── lib
│ ├── DevMiddlewareError.js
│ ├── index.js
│ ├── middleware.js
│ └── utils
│ ├── getFilenameFromUrl.js
│ ├── handleRangeHeaders.js
│ ├── index.js
│ ├── ready.js
│ ├── reporter.js
│ ├── setupHooks.js
│ ├── setupLogger.js
│ ├── setupOutputFileSystem.js
│ ├── setupRebuild.js
│ └── setupWriteToDisk.js
├── package.json
...
其中 lib
目录下为源代码,一眼望去有近 10 多个文件要解读。但刨除 utils
工具集合目录,其核心源码文件其实只有两个 index.js
、middleware.js
下面我们就来分析核心文件 index.js
、middleware.js
的源码实现
从上文我们已经得知 wdm(compiler)
返回的是一个 express
中间件,所以入口文件 index.js
则为一个中间件的容器包装函数。它接收两个参数,一个为 webpack
的 compiler
、另一个为配置对象,经过一系列的处理,最后返回一个中间件函数。下面我将对 index.js
中的核心代码进行讲解:
...
setupHooks(context);
...
// start watching
context.watching = compiler.watch(options.watchOptions, (err) => {
if (err) {
context.log.error(err.stack || err);
if (err.details) {
context.log.error(err.details);
}
}
});
...
setupOutputFileSystem(compiler, context);
index.js
最为核心的是以上 3 个部分的执行,分别完成了我们上文提到的两点特性:
以监控的方式启动 webpack
将 webpack
的编译内容,输出至内存中
此函数的作用是在 compiler
的 invalid
、run
、done
、watchRun
这 4 个编译生命周期上,注册对应的处理方法
context.compiler.hooks.invalid.tap('WebpackDevMiddleware', invalid);
context.compiler.hooks.run.tap('WebpackDevMiddleware', invalid);
context.compiler.hooks.done.tap('WebpackDevMiddleware', done);
context.compiler.hooks.watchRun.tap(
'WebpackDevMiddleware',
(comp, callback) => {
invalid(callback);
}
);
在 done
生命周期上注册 done
方法,该方法主要是 report
编译的信息以及执行 context.callbacks
回调函数
在 invalid
、run
、watchRun
等生命周期上注册 invalid
方法,该方法主要是 report
编译的状态信息
此部分的作用是,调用 compiler
的 watch 方法,之后 webpack
便会监听文件变更,一旦检测到文件变更,就会重新执行编译。
其作用是使用 memory-fs 对象替换掉 compiler
的文件系统对象,让 webpack
编译后的文件输出到内存中。
fileSystem = new MemoryFileSystem();
// eslint-disable-next-line no-param-reassign
compiler.outputFileSystem = fileSystem;
通过以上 3 个部分的执行,我们以 watch mode
的方式启动了 webpack
,一旦监测的文件变更,便会重新进行编译打包,同时我们又将文件的存储方法改为了内存存储,提高了文件的存储读取效率。最后,我们只需要返回 express
的中间件就可以了,而中间件则是调用 middleware(context)
函数得到的。下面,我们来看看 middleware
是如何实现的。
此文件返回的是一个 express
中间件函数的包装函数,其核心处理逻辑主要针对 request
请求,根据各种条件判断,最终返回对应的文件内容:
function goNext() {
if (!context.options.serverSideRender) {
return next();
}
return new Promise((resolve) => {
ready(
context,
() => {
// eslint-disable-next-line no-param-reassign
res.locals.webpackStats = context.webpackStats;
// eslint-disable-next-line no-param-reassign
res.locals.fs = context.fs;
resolve(next());
},
req
);
});
}
首先,middleware
中定义了一个 goNext()
方法,该方法判断是否是服务端渲染。如果是,则调用 ready()
方法(此方法即为 ready.js
文件,作用为根据 context.state
状态判断直接执行回调还是将回调存储 callbacks
队列中)。如果不是,则直接调用 next()
方法,流转至下一个 express
中间件。
const acceptedMethods = context.options.methods || ['GET', 'HEAD'];
if (acceptedMethods.indexOf(req.method) === -1) {
return goNext();
}
接着,判断 HTTP
协议的请求的类型,若请求不包含于配置中(默认 GET
、HEAD
请求),则直接调用 goNext()
方法处理请求:
let filename = getFilenameFromUrl(
context.options.publicPath,
context.compiler,
req.url
);
if (filename === false) {
return goNext();
}
然后,根据请求的 req.url
地址,在 compiler
的内存文件系统中查找对应的文件,若查找不到,则直接调用 goNext()
方法处理请求:
return new Promise((resolve) => {
// eslint-disable-next-line consistent-return
function processRequest() {
...
}
...
ready(context, processRequest, req);
});
最后,中间件返回一个 Promise
实例,而在实例中,先是定义一个 processRequest
方法,此方法的作用是根据上文中找到的 filename
路径获取到对应的文件内容,并构造 response
对象返回,随后调用 ready(context, processRequest, req)
函数,去执行 processRequest
方法。这里我们着重看下 ready
方法的内容:
if (context.state) {
return fn(context.webpackStats);
}
context.log.info(`wait until bundle finished: ${req.url || fn.name}`);
context.callbacks.push(fn);
非常简单的方法,判断 context.state
的状态,将直接执行回调函数 fn
,或在 context.callbacks
中添加回调函数 fn
。这也解释了上文提到的另一个特性 “在编译期间,停止提供旧版的 bundle
并且将请求延迟到最新的编译结果完成之后”。若 webpack
还处于编译状态,context.state
会被设置为 false
,所以当用户发起请求时,并不会直接返回对应的文件内容,而是会将回调函数 processRequest
添加至 context.callbacks
中,而上文中我们说到在 compile.hooks.done
上注册了回调函数 done
,等编译完成之后,将会执行这个函数,并循环调用 context.callbacks
。
源码的阅读是一个非常枯燥的过程,但是它的收益也是巨大的。上文的源码解读主要分析的是 webpack-dev-middleware
它是如何实现它所拥有的特性、如何处理用户的请求等主要功能点,未包括其他分支逻辑处理、容错。还需读者在这篇文章基础之上,再去阅读详细的源码,望这篇文章能对你的阅读过程起到一定的帮助作用。
推荐阅读
1、抛弃jenkins,如何用node从零搭建自动化部署管理平台
2、超详细!从本质上搞懂困惑你多年的KMP匹配算法
3、十大经典排序算法整理汇总(附代码)
4、刷遍Leetcode面试题系列连载(1) - 入门与工具简介(C#篇)
5、一文带你AC十道题【滑动窗口】
6、用好这几个工具,能大幅提升你的 Git/GitHub 操作效率!
如果觉得文章不错,帮忙点个在看呗