101. 对称二叉树
给定一个二叉树,检查它是否是镜像对称的。
例如,二叉树 [1,2,2,3,4,4,3]
是对称的。
1
/ \
2 2
/ \ / \
3 4 4 3
但是下面这个 [1,2,2,null,3,null,3]
则不是镜像对称的:
1
/ \
2 2
\ \
3 3
说明:
如果你可以运用递归和迭代两种方法解决这个问题,会很加分。
方法:递归
如果一个树的左子树与右子树镜像对称,那么这个树是对称的。
因此,该问题可以转化为:两个树在什么情况下互为镜像?
如果同时满足下面的条件,两个树互为镜像:
就像人站在镜子前审视自己那样。镜中的反射与现实中的人具有相同的头部,但反射的右臂对应于人的左臂,反之亦然。
上面的解释可以很自然地转换为一个递归函数,如下所示:
public boolean isSymmetric(TreeNode root) {
return isMirror(root, root);
}
public boolean isMirror(TreeNode t1, TreeNode t2) {
if (t1 == null && t2 == null) return true;
if (t1 == null || t2 == null) return false;
return (t1.val == t2.val)
&& isMirror(t1.right, t2.left)
&& isMirror(t1.left, t2.right);
}
复杂度分析
方法二:迭代
除了递归的方法外,我们也可以利用队列进行迭代。队列中每两个连续的结点应该是相等的,而且它们的子树互为镜像。最初,队列中包含的是 root
以及 root
。该算法的工作原理类似于 BFS,但存在一些关键差异。每次提取两个结点并比较它们的值。然后,将两个结点的左右子结点按相反的顺序插入队列中。当队列为空时,或者我们检测到树不对称(即从队列中取出两个不相等的连续结点)时,该算法结束。
public boolean isSymmetric(TreeNode root) {
Queue q = new LinkedList<>();
q.add(root);
q.add(root);
while (!q.isEmpty()) {
TreeNode t1 = q.poll();
TreeNode t2 = q.poll();
if (t1 == null && t2 == null) continue;
if (t1 == null || t2 == null) return false;
if (t1.val != t2.val) return false;
q.add(t1.left);
q.add(t2.right);
q.add(t1.right);
q.add(t2.left);
}
return true;
}
复杂度分析
114. 二叉树展开为链表
给定一个二叉树,原地将它展开为链表。
例如,给定二叉树
1
/ \
2 5
/ \ \
3 4 6
将其展开为:
1
\
2
\
3
\
4
\
5
\
6
后序遍历,把左节点(此时已排好序)赋给右节点(此时已排好序),再把左节点置空,原来的左节点尾结点连接原来的右节点的头结点
class Solution {
public void flatten(TreeNode root) {
if(root == null) return;
flatten(root.left);
flatten(root.right);
TreeNode tmp = root.right;
root.right = root.left;
root.left = null;
while(root.right != null) root = root.right;
root.right = tmp;
}
}
121. 买卖股票的最佳时机
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。
注意你不能在买入股票前卖出股票。
示例 1:
输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。
示例 2:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解决方案
我们需要找出给定数组中两个数字之间的最大差值(即,最大利润)。此外,第二个数字(卖出价格)必须大于第一个数字(买入价格)。
形式上,对于每组 ii 和 jj(其中 j > ij>i)我们需要找出 \max(prices[j] - prices[i])max(prices[j]−prices[i])。
方法一:暴力法
Java
public class Solution {
public int maxProfit(int prices[]) {
int maxprofit = 0;
for (int i = 0; i < prices.length - 1; i++) {
for (int j = i + 1; j < prices.length; j++) {
int profit = prices[j] - prices[i];
if (profit > maxprofit)
maxprofit = profit;
}
}
return maxprofit;
}
}
复杂度分析
时间复杂度:O(n^2)O(n
2
)。循环运行 \dfrac{n (n-1)}{2}
2
n(n−1)
次。
空间复杂度:O(1)O(1)。只使用了两个变量 —— \text{maxprofit}maxprofit 和 \text{profit}profit。
方法二:一次遍历
算法
假设给定的数组为:
[7, 1, 5, 3, 6, 4]
如果我们在图表上绘制给定数组中的数字,我们将会得到:
使我们感兴趣的点是上图中的峰和谷。我们需要找到最小的谷之后的最大的峰。 我们可以维持两个变量——minprice 和 maxprofit,它们分别对应迄今为止所得到的最小的谷值和最大的利润(卖出价格与最低价格之间的最大差值)。
Java
public class Solution {
public int maxProfit(int prices[]) {
int minprice = Integer.MAX_VALUE;
int maxprofit = 0;
for (int i = 0; i < prices.length; i++) {
if (prices[i] < minprice)
minprice = prices[i];
else if (prices[i] - minprice > maxprofit)
maxprofit = prices[i] - minprice;
}
return maxprofit;
}
}
复杂度分析
时间复杂度:O(n)O(n),只需要遍历一次。
空间复杂度:O(1)O(1),只使用了两个变量。