hdu1081To The Max

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8992    Accepted Submission(s): 4359


Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.
 

Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
 

Output
Output the sum of the maximal sub-rectangle.
 

Sample Input
 
   
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
 

Sample Output
 
   
15
 

Source
Greater New York 2001


最大连续子串和:

有串s,用一个临时变量t维护一个ans,若t>=0则加上s[i]可能会更好,于是有t+=s[i],
若t<0,则变成s[i]可能会更好,于是有t=s[i]
每次若大于ans,更新即可

最大子矩阵和:

有矩阵s,用一个临时数组a维护一个ans,每次a都记录s连续i行矩阵的和,
这样就可以当作最大连续子串处理,每次算出最大值更新ans,即可

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
int a[110],pic[110][110];
int n;
int sub()
{
	int ans=INT_MIN,t=0;
	for(int i=0;i=0)
			t+=a[i];
		else
			t=a[i];
		ans=max(ans,t);
	}
	return ans;
}
int matrix()
{
	int ans=INT_MIN;
	for(int i=0;i>n)
	{
		for(int i=0;i>pic[i][j];
		cout<


你可能感兴趣的:(暴力,贪心)