- AI软件外包需要注意什么 外包开发AI软件的关键因素是什么 如何选择AI外包开发语言
北京动点飞扬软件
AI外包
1.定义目标与需求首先,要明确你希望AI智能体做什么。是自动化任务、数据分析、自然语言处理,还是其他功能?明确目标可以帮助你选择合适的技术和方法。2.选择开发平台与工具开发AI智能体的软件时,你需要选择适合的编程语言、框架和工具。例如:编程语言:Python是最常用的语言,因为它有强大的AI/ML库,如TensorFlow、PyTorch、scikit-learn等。开发平台:你可以使用本地环境、
- 从简单到深刻的认知发展
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
认知发展,人工智能,深度学习,神经网络,机器学习,自然语言处理,计算机视觉1.背景介绍认知发展是人类从简单到复杂的思维方式演进的过程,它涉及感知、记忆、语言、推理和决策等多个方面。随着人工智能技术的飞速发展,我们开始尝试用计算机模拟人类的认知能力,构建能够学习、理解和解决复杂问题的智能系统。从早期的符号逻辑到如今的深度学习,人工智能的发展经历了多个阶段。早期的人工智能研究主要集中在规则和逻辑推理上
- THULAC-Python 使用教程
时昕海Minerva
THULAC-Python使用教程THULAC-PythonTHULAC-Python:由清华大学开发的中文词法分析工具包,提供中文分词和词性标注功能。项目地址:https://gitcode.com/gh_mirrors/th/THULAC-Python项目介绍THULAC(THULexicalAnalyzerforChinese)是由清华大学自然语言处理与社会人文计算实验室研制推出的一套中文词
- 【Python】探索自然语言处理的利器:THULAC 中文词法分析库详解
技术无疆
Python人工智能自然语言处理人工智能python数据挖掘机器学习深度学习神经网络
THULAC(THULexicalAnalyzerforChinese)是清华大学开发的一款中文词法分析工具,集成了分词和词性标注两大功能。THULAC拥有强大的分词能力和高效的词性标注,适用于多种中文文本处理场景。该工具能够在保证高准确率的同时保持较快的处理速度,非常适合大规模中文数据处理。⭕️宇宙起点THULAC的特点安装与配置1.使用pip安装2.使用GitHub源码安装♨️使用方法1.分词
- 探索GigaChat与LangChain的完美结合:深度解析与实战指南
asdfujhgy
langchaineasyui前端python
探索GigaChat与LangChain的完美结合:深度解析与实战指南引言在人工智能的领域中,语言模型和嵌入技术正逐步改变我们与数据交互的方式。GigaChat作为一种创新的AI嵌入服务,结合LangChain可以提供强大的文本嵌入功能,促进自然语言处理任务的完成。本篇文章将带你深入了解如何结合GigaChat与LangChain进行文本嵌入,并提供实用的代码示例与解决方案。主要内容GigaCha
- 人工智能学习框架:深入解析与实战指南
一ge科研小菜鸡
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言随着人工智能(AI)技术的飞速发展,深度学习、强化学习和自然语言处理等领域的应用愈加广泛。掌握人工智能学习框架(如TensorFlow、PyTorch、Keras等)已成为开发智能系统、研究前沿技术的必备技能。本指南将全面介绍人工智能主流学习框架的特点、安装方法、核心功能,以及通过实践案例展示如何使用这些框架进行AI模型开发、训练与优化。1.
- # 第一章:认识chatgpt
出门喝奶茶
chatgptchatgpt
chatgpt发展背景详细介绍一、基础理论背景人工智能和自然语言处理的兴起早期理论:20世纪中期,人工智能(AI)初见端倪,目标是模拟人类智能。自然语言处理作为AI的重要分支,致力于让机器理解和生成人类语言。关键里程碑:1980年代的统计方法和2000年代的神经网络技术,使NLP实现了从规则驱动到数据驱动的转变。神经网络与深度学习2010年代,深度学习的兴起极大推动了NLP的发展。基于大规模语料库
- #深度学习:从基础到实践
single_ffish
深度学习gpt神经网络生成对抗网络1024程序员节
深度学习是人工智能领域近年来最为火热的技术之一。它通过构建由多个隐藏层组成的神经网络模型,能够从海量数据中自动学习特征和表征,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。本文将全面介绍深度学习的基础知识、主要算法和实践应用,帮助您快速掌握这一前沿技术。1.深度学习的基础1.1人工神经网络深度学习是基于人工神经网络(ArtificialNeuralNetwork,ANN)的一种机器学习
- AI在电商平台商品描述生成中的应用
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
AI在电商平台商品描述生成中的应用关键词:人工智能、电商平台、商品描述、自然语言处理、机器学习、深度学习摘要:本文深入探讨了人工智能在电商平台商品描述生成中的应用。首先,我们回顾了人工智能的概述和电商平台的发展背景。随后,分析了商品描述在电商平台中的重要性以及存在的问题。接下来,我们重点介绍了AI在商品描述生成中的应用技术,包括自然语言处理、机器学习和深度学习等。文章还通过实战案例展示了AI商品描
- transformer.js(一):这个前端大模型运行框架的可运行环境、使用方式、代码示例以及适合与不适合的场景
余生H
前端的AI工具书前端transformerjavascripthugginfacewebmlweb大模型
随着大模型的广泛应用,越来越多的开发者希望在前端直接运行机器学习模型,从而减少对后端的依赖,并提升用户体验。Transformer.js是一个专为前端环境设计的框架,它支持运行基于Transformer架构的深度学习模型,尤其是像BERT、GPT等广泛应用于自然语言处理(NLP)的模型。本文将全面解析Transformer.js的运行环境、使用方式、代码示例,以及其能够完成的功能与目前的限制,帮助
- 人工智能技术的应用前景及未来发展
键盘上的蚂蚁-
人工智能生活
引言人工智能(AI)作为21世纪最具创新性和革命性的技术之一,正在全球范围内深刻地改变着我们的生产、工作和生活方式。随着深度学习、强化学习、自然语言处理(NLP)、计算机视觉(CV)等技术的飞速进展,AI不再仅仅是学术研究中的一个热点,而是渗透到各个行业,成为推动创新、优化生产和提升效率的核心力量。对于开发者来说,理解和掌握AI技术不仅是提升个人技能的途径,更是应对未来技术变革、抓住职业机遇的关键
- 基于 PyTorch 的深度学习模型开发实战
一ge科研小菜鸡
人工智能深度学习
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言深度学习已广泛应用于图像识别、自然语言处理、自动驾驶等领域,凭借其强大的特征学习能力,成为人工智能的核心技术之一。PyTorch作为当前流行的深度学习框架,提供了灵活的张量操作和动态计算图,便于模型的快速开发和调试。本教程将通过一个完整的深度学习模型开发流程,从数据预处理、模型构建、训练与优化、评估以及部署,帮助读者深入理解深度学习的关键技术
- 构建桌面聊天助手:Mistral AI、LangChain 和 Tkinter 的结合
花生糖@
AIGC学习资料库人工智能langchaineasyuiMistralAITkinterAI助手
在人工智能(AI)技术日新月异的今天,大型语言模型(LLMs)和LangChain成为了炙手可热的话题。作为一名开发者,我最近进行了一项实验,旨在创建一个实用的工具,将强大的AI功能与Python编程语言的简洁性结合起来,为用户提供便捷的服务。这次实验的成果是一款专为记者设计的桌面聊天助手,它使用了MistralAI提供的强大自然语言处理能力,并通过LangChain进行集成,同时利用Tkinte
- 数字人+虚拟展厅:开启互动展览新篇章!
jimumeta
3D行业资讯人工智能vrar虚拟展厅3D展厅
“数字人+展厅”这一组合正逐渐成为展览展示领域的新宠,它融合了最前沿的人工智能、虚拟现实、增强现实等技术,为观众带来了前所未有的互动新体验。数字人,即利用计算机图形学、人工智能等技术生成的具有人类外貌、行为和交互能力的虚拟形象。这些数字人不仅在外形上栩栩如生,还能通过自然语言处理、语音识别与合成等技术实现与人类的实时交互,模拟出真实的人际对话和情感表达。展厅应用的优势增强互动性:数字人作为展厅的虚
- 自主学习与自然语言处理的融合:实现更智能的聊天机器人
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍自主学习(autonomouslearning)是一种学习方法,它允许机器人或计算机系统在没有人类干预的情况下自行学习和改进。自主学习可以帮助机器人或计算机系统更好地适应新的环境和任务,提高其智能性和效率。自然语言处理(naturallanguageprocessing,NLP)是计算机科学和人工智能领域的一个分支,它涉及计算机如何理解、处理和生成人类语言。自主学习与自然语言处理的融合
- 0基础跟德姆(dom)一起学AI 自然语言处理22-fasttext文本分类
跟德姆(dom)一起学AI
人工智能自然语言处理分类python深度学习transformer
1文本分类介绍1.1文本分类概念文本分类的是将文档(例如电子邮件,帖子,文本消息,产品评论等)分配给一个或多个类别.当今文本分类的实现多是使用机器学习方法从训练数据中提取分类规则以进行分类,因此构建文本分类器需要带标签的数据.1.2文本分类种类二分类:文本被分类两个类别中,往往这两个类别是对立面,比如:判断一句评论是好评还是差评.单标签多分类:文本被分入到多个类别中,且每条文本只能属于某一个类别(
- 0基础跟德姆(dom)一起学AI 自然语言处理18-解码器部分实现
跟德姆(dom)一起学AI
人工智能自然语言处理rnnpython深度学习transformer
1解码器介绍解码器部分:由N个解码器层堆叠而成每个解码器层由三个子层连接结构组成第一个子层连接结构包括一个多头自注意力子层和规范化层以及一个残差连接第二个子层连接结构包括一个多头注意力子层和规范化层以及一个残差连接第三个子层连接结构包括一个前馈全连接子层和规范化层以及一个残差连接说明:解码器层中的各个部分,如,多头注意力机制,规范化层,前馈全连接网络,子层连接结构都与编码器中的实现相同.因此这里可
- 0基础跟德姆(dom)一起学AI 自然语言处理20-模型构建
跟德姆(dom)一起学AI
人工智能自然语言处理transformerpython深度学习
1模型构建介绍通过上面的小节,我们已经完成了所有组成部分的实现,接下来就来实现完整的编码器-解码器结构.Transformer总体架构图:2编码器-解码器结构的代码实现EncoderDecoder函数完成编码解码的子任务,就是把编码和解码的流程进行封装实现。#编码解码内部函数类EncoderDecoder实现分析#init函数(self,encoder,decoder,source_embed,t
- 大数据平台建设整体架构设计方案
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大数据AI人工智能大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《大数据平台建设整体架构设计方案》关键词:大数据平台、分布式存储、分布式计算、数据仓库、数据湖、数据安全、数据质量管理、数据治理、数据挖掘、机器学习、图计算、自然语言处理、Hadoop、Spark、Flink、项目规划、运维管理、最佳实践。摘要:本文将深入探讨大数据平台建设整体架构设计方案,从概述与核心概念、技术栈、建设实践、运维管理以及经验展望等多个方面进行详细阐述。通过梳理大数据平台的核心组成
- 如何使用Llama-2-7b-chat-hf模型进行对话生成
娄泳含
如何使用Llama-2-7b-chat-hf模型进行对话生成Llama-2-7b-chat-hf项目地址:https://gitcode.com/mirrors/NousResearch/Llama-2-7b-chat-hf引言在当今的数字化时代,自然语言处理(NLP)技术的发展日新月异,对话生成模型作为其中的重要组成部分,已经在多个领域展现出巨大的应用潜力。无论是智能客服、虚拟助手,还是教育辅导
- 探索Llama Recipes:Meta Llama模型的实用示例库
郁英忆
探索LlamaRecipes:MetaLlama模型的实用示例库去发现同类优质开源项目:https://gitcode.com/在机器学习和自然语言处理的世界中,MetaLlama模型是一颗璀璨的新星,以其强大的对话理解和生成能力而受到广泛关注。现在,有了llama-recipes这个开源项目,开发者可以轻松上手并充分利用这些模型。本文将引导您了解这个项目,它的技术优势,适用场景以及鲜明特点。项目
- RAG理论到实践:高级、模块化RAG在AI工程架构中的行业通用解决方案与实施策略(Advanced RAG✨)
汀、人工智能
LLM工业级落地实践人工智能AIAgentRAG知识问答智能问答
RAG理论到实践:高级、模块化RAG在AI工程架构中的行业通用解决方案与实施策略(AdvancedRAG✨)1.RAG简介词汇解释说明embedding嵌入(embedding)是指将高维数据映射为低维表示的过程。在机器学习和自然语言处理中,嵌入通常用于将离散的符号或对象表示为连续的向量空间中的点。在自然语言处理中,词嵌入(wordembedding)是一种常见的技术,它将单词映射到实数向量,以便
- 基于CNN+Transformer混合模型实现交通流量时序预测(PyTorch版)
矩阵猫咪
cnntransformerpytorch卷积神经网络深度学习
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。随着城市化进程的加速,交通流量预测成为城市交通管理与规划中的关键任务。准确的交通流量预测
- 【2024最新】python第三方库 的概述——功能、特点
西西很呆
python开发语言源代码管理编辑器计算机网络scrapypandas
文章目录一、网络请求与爬虫Requests:Scrapy:BeautifulSoup:二、数据处理与分析NumPy:Pandas:SQLAlchemy:SciPy:matplotlib:Seaborn:三、Web开发Flask:Django:四、图像处理Pillow(PILFork):OpenCV-Python:五、游戏开发Pygame:Pyglet:六、自然语言处理NLTK(NaturalLan
- 大语言模型应用指南:OpenAI大语言模型简介
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:OpenAI大语言模型简介1.背景介绍1.1问题的由来在过去几年中,自然语言处理(NLP)领域取得了长足的进步,这主要归功于大型语言模型(LargeLanguageModels,LLMs)的出现和发展。LLMs是一种基于深度学习的人工智能模型,能够从大量文本数据中学习语言模式和语义关系,从而生成看似人类写作的自然语言输出。随着计算能力和数据可用性的不断提高,LLMs的规模也在不
- 《剖析Transformer架构:自然语言处理飞跃的幕后英雄》
人工智能深度学习
在人工智能的迅猛发展进程中,自然语言处理(NLP)领域取得了令人瞩目的突破,而Transformer架构无疑是这场变革的核心驱动力。自从2017年在论文《AttentionIsAllYouNeed》中被提出,Transformer便在NLP领域引发了一场革命,彻底改变了模型处理和理解人类语言的方式。打破传统枷锁,开创并行计算新时代在Transformer出现之前,循环神经网络(RNN)及其变体,如
- AI学习指南Ollama篇-Ollama简介
俞兆鹏
AI学习指南人工智能ollama
一、定义大语言模型(LLM)是一种基于深度学习的自然语言处理模型,能够生成文本、回答问题、翻译语言、撰写代码等。这些模型通过海量的文本数据进行训练,学习语言的模式和结构,从而能够生成自然流畅的文本内容。随着技术的不断进步,大语言模型在各个领域都展现出了巨大的潜力。二、应用场景大语言模型的应用场景非常广泛,以下是一些常见的例子:聊天机器人:通过自然语言理解与生成,为用户提供智能对话服务。内容创作:帮
- 【Python高阶篇】探索人工智能:使用Python构建一个简单的聊天机器人
码农必胜客
python人工智能机器人
人工智能是计算机科学中一个非常热门的领域,近年来得到了越来越多的关注。它通过模拟人类思考过程和智能行为来实现对复杂任务的自主处理和学习,已经被广泛应用于许多领域,包括语音识别、自然语言处理、机器人技术、图像识别和推荐系统等。本文将介绍如何使用Python构建一个简单的聊天机器人,以展示人工智能的基本原理和应用。我们将使用Python语言和自然语言处理库来构建一个聊天机器人,该机器人可以接收用户的输
- 大模型中的分词技术 BBPE
禅与计算机技术
深度学习大模型NLP深度学习nlp中文分词机器学习
一、OOV问题和多语言场景在自然语言处理(NLP)中,OOV(Out-of-Vocabulary)问题是指模型在处理文本时遇到未在词表中出现过的词汇,导致无法有效处理这些词汇的情况。这一问题在多语言场景中尤为突出,因为不同语言在词汇、语法结构和表达方式上存在显著差异,单一语言的词表难以全面覆盖多语言的复杂性。在多语言场景下的NLP任务中(如机器翻译、跨语言文本分类等),模型需要处理多种语言的混合文
- 【自然语言处理(NLP)】jieba分词的使用(分词模式、关键词提取)
道友老李
自然语言处理(NLP)自然语言处理人工智能
文章目录介绍jieba分词的使用1.安装2.jieba分词模式2.1精确模式2.2全模式2.3搜索引擎模式2.4词性标注2.5加载自己的分词文件3.查看词频4.关键词提取个人主页:道友老李欢迎加入社区:道友老李的学习社区介绍**自然语言处理(NaturalLanguageProcessing,NLP)**是计算机科学领域与人工智能领域中的一个重要方向。它研究的是人类(自然)语言与计算机之间的交互。
- 多线程编程之理财
周凡杨
java多线程生产者消费者理财
现实生活中,我们一边工作,一边消费,正常情况下会把多余的钱存起来,比如存到余额宝,还可以多挣点钱,现在就有这个情况:我每月可以发工资20000万元 (暂定每月的1号),每月消费5000(租房+生活费)元(暂定每月的1号),其中租金是大头占90%,交房租的方式可以选择(一月一交,两月一交、三月一交),理财:1万元存余额宝一天可以赚1元钱,
- [Zookeeper学习笔记之三]Zookeeper会话超时机制
bit1129
zookeeper
首先,会话超时是由Zookeeper服务端通知客户端会话已经超时,客户端不能自行决定会话已经超时,不过客户端可以通过调用Zookeeper.close()主动的发起会话结束请求,如下的代码输出内容
Created /zoo-739160015
CONNECTEDCONNECTED
.............CONNECTEDCONNECTED
CONNECTEDCLOSEDCLOSED
- SecureCRT快捷键
daizj
secureCRT快捷键
ctrl + a : 移动光标到行首ctrl + e :移动光标到行尾crtl + b: 光标前移1个字符crtl + f: 光标后移1个字符crtl + h : 删除光标之前的一个字符ctrl + d :删除光标之后的一个字符crtl + k :删除光标到行尾所有字符crtl + u : 删除光标至行首所有字符crtl + w: 删除光标至行首
- Java 子类与父类这间的转换
周凡杨
java 父类与子类的转换
最近同事调的一个服务报错,查看后是日期之间转换出的问题。代码里是把 java.sql.Date 类型的对象 强制转换为 java.sql.Timestamp 类型的对象。报java.lang.ClassCastException。
代码:
- 可视化swing界面编辑
朱辉辉33
eclipseswing
今天发现了一个WindowBuilder插件,功能好强大,啊哈哈,从此告别手动编辑swing界面代码,直接像VB那样编辑界面,代码会自动生成。
首先在Eclipse中点击help,选择Install New Software,然后在Work with中输入WindowBui
- web报表工具FineReport常用函数的用法总结(文本函数)
老A不折腾
finereportweb报表工具报表软件java报表
文本函数
CHAR
CHAR(number):根据指定数字返回对应的字符。CHAR函数可将计算机其他类型的数字代码转换为字符。
Number:用于指定字符的数字,介于1Number:用于指定字符的数字,介于165535之间(包括1和65535)。
示例:
CHAR(88)等于“X”。
CHAR(45)等于“-”。
CODE
CODE(text):计算文本串中第一个字
- mysql安装出错
林鹤霄
mysql安装
[root@localhost ~]# rpm -ivh MySQL-server-5.5.24-1.linux2.6.x86_64.rpm Preparing... #####################
- linux下编译libuv
aigo
libuv
下载最新版本的libuv源码,解压后执行:
./autogen.sh
这时会提醒找不到automake命令,通过一下命令执行安装(redhat系用yum,Debian系用apt-get):
# yum -y install automake
# yum -y install libtool
如果提示错误:make: *** No targe
- 中国行政区数据及三级联动菜单
alxw4616
近期做项目需要三级联动菜单,上网查了半天竟然没有发现一个能直接用的!
呵呵,都要自己填数据....我了个去这东西麻烦就麻烦的数据上.
哎,自己没办法动手写吧.
现将这些数据共享出了,以方便大家.嗯,代码也可以直接使用
文件说明
lib\area.sql -- 县及县以上行政区划分代码(截止2013年8月31日)来源:国家统计局 发布时间:2014-01-17 15:0
- 哈夫曼加密文件
百合不是茶
哈夫曼压缩哈夫曼加密二叉树
在上一篇介绍过哈夫曼编码的基础知识,下面就直接介绍使用哈夫曼编码怎么来做文件加密或者压缩与解压的软件,对于新手来是有点难度的,主要还是要理清楚步骤;
加密步骤:
1,统计文件中字节出现的次数,作为权值
2,创建节点和哈夫曼树
3,得到每个子节点01串
4,使用哈夫曼编码表示每个字节
- JDK1.5 Cyclicbarrier实例
bijian1013
javathreadjava多线程Cyclicbarrier
CyclicBarrier类
一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环的 barrier。
CyclicBarrier支持一个可选的 Runnable 命令,
- 九项重要的职业规划
bijian1013
工作学习
一. 学习的步伐不停止 古人说,活到老,学到老。终身学习应该是您的座右铭。 世界在不断变化,每个人都在寻找各自的事业途径。 您只有保证了足够的技能储
- 【Java范型四】范型方法
bit1129
java
范型参数不仅仅可以用于类型的声明上,例如
package com.tom.lang.generics;
import java.util.List;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value =
- 【Hadoop十三】HDFS Java API基本操作
bit1129
hadoop
package com.examples.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoo
- ua实现split字符串分隔
ronin47
lua split
LUA并不象其它许多"大而全"的语言那样,包括很多功能,比如网络通讯、图形界面等。但是LUA可以很容易地被扩展:由宿主语言(通常是C或 C++)提供这些功能,LUA可以使用它们,就像是本来就内置的功能一样。LUA只包括一个精简的核心和最基本的库。这使得LUA体积小、启动速度快,从 而适合嵌入在别的程序里。因此在lua中并没有其他语言那样多的系统函数。习惯了其他语言的字符串分割函
- java-从先序遍历和中序遍历重建二叉树
bylijinnan
java
public class BuildTreePreOrderInOrder {
/**
* Build Binary Tree from PreOrder and InOrder
* _______7______
/ \
__10__ ___2
/ \ /
4
- openfire开发指南《连接和登陆》
开窍的石头
openfire开发指南smack
第一步
官网下载smack.jar包
下载地址:http://www.igniterealtime.org/downloads/index.jsp#smack
第二步
把smack里边的jar导入你新建的java项目中
开始编写smack连接openfire代码
p
- [移动通讯]手机后盖应该按需要能够随时开启
comsci
移动
看到新的手机,很多由金属材质做的外壳,内存和闪存容量越来越大,CPU速度越来越快,对于这些改进,我们非常高兴,也非常欢迎
但是,对于手机的新设计,有几点我们也要注意
第一:手机的后盖应该能够被用户自行取下来,手机的电池的可更换性应该是必须保留的设计,
- 20款国外知名的php开源cms系统
cuiyadll
cms
内容管理系统,简称CMS,是一种简易的发布和管理新闻的程序。用户可以在后端管理系统中发布,编辑和删除文章,即使您不需要懂得HTML和其他脚本语言,这就是CMS的优点。
在这里我决定介绍20款目前国外市面上最流行的开源的PHP内容管理系统,以便没有PHP知识的读者也可以通过国外内容管理系统建立自己的网站。
1. Wordpress
WordPress的是一个功能强大且易于使用的内容管
- Java生成全局唯一标识符
darrenzhu
javauuiduniqueidentifierid
How to generate a globally unique identifier in Java
http://stackoverflow.com/questions/21536572/generate-unique-id-in-java-to-label-groups-of-related-entries-in-a-log
http://stackoverflow
- php安装模块检测是否已安装过, 使用的SQL语句
dcj3sjt126com
sql
SHOW [FULL] TABLES [FROM db_name] [LIKE 'pattern']
SHOW TABLES列举了给定数据库中的非TEMPORARY表。您也可以使用mysqlshow db_name命令得到此清单。
本命令也列举数据库中的其它视图。支持FULL修改符,这样SHOW FULL TABLES就可以显示第二个输出列。对于一个表,第二列的值为BASE T
- 5天学会一种 web 开发框架
dcj3sjt126com
Web框架framework
web framework层出不穷,特别是ruby/python,各有10+个,php/java也是一大堆 根据我自己的经验写了一个to do list,按照这个清单,一条一条的学习,事半功倍,很快就能掌握 一共25条,即便很磨蹭,2小时也能搞定一条,25*2=50。只需要50小时就能掌握任意一种web框架
各类web框架大同小异:现代web开发框架的6大元素,把握主线,就不会迷路
建议把本文
- Gson使用三(Map集合的处理,一对多处理)
eksliang
jsongsonGson mapGson 集合处理
转载请出自出处:http://eksliang.iteye.com/blog/2175532 一、概述
Map保存的是键值对的形式,Json的格式也是键值对的,所以正常情况下,map跟json之间的转换应当是理所当然的事情。 二、Map参考实例
package com.ickes.json;
import java.lang.refl
- cordova实现“再点击一次退出”效果
gundumw100
android
基本的写法如下:
document.addEventListener("deviceready", onDeviceReady, false);
function onDeviceReady() {
//navigator.splashscreen.hide();
document.addEventListener("b
- openldap configuration leaning note
iwindyforest
configuration
hostname // to display the computer name
hostname <changed name> // to change
go to: /etc/sysconfig/network, add/modify HOSTNAME=NEWNAME to change permenately
dont forget to change /etc/hosts
- Nullability and Objective-C
啸笑天
Objective-C
https://developer.apple.com/swift/blog/?id=25
http://www.cocoachina.com/ios/20150601/11989.html
http://blog.csdn.net/zhangao0086/article/details/44409913
http://blog.sunnyxx
- jsp中实现参数隐藏的两种方法
macroli
JavaScriptjsp
在一个JSP页面有一个链接,//确定是一个链接?点击弹出一个页面,需要传给这个页面一些参数。//正常的方法是设置弹出页面的src="***.do?p1=aaa&p2=bbb&p3=ccc"//确定目标URL是Action来处理?但是这样会在页面上看到传过来的参数,可能会不安全。要求实现src="***.do",参数通过其他方法传!//////
- Bootstrap A标签关闭modal并打开新的链接解决方案
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
Bootstrap里面的js modal控件使用起来很方便,关闭也很简单。只需添加标签 data-dismiss="modal" 即可。
可是偏偏有时候需要a标签既要关闭modal,有要打开新的链接,尝试多种方法未果。只好使用原始js来控制。
<a href="#/group-buy" class="btn bt
- 二维数组在Java和C中的区别
流淚的芥末
javac二维数组数组
Java代码:
public class test03 {
public static void main(String[] args) {
int[][] a = {{1},{2,3},{4,5,6}};
System.out.println(a[0][1]);
}
}
运行结果:
Exception in thread "mai
- systemctl命令用法
wmlJava
linuxsystemctl
对比表,以 apache / httpd 为例 任务 旧指令 新指令 使某服务自动启动 chkconfig --level 3 httpd on systemctl enable httpd.service 使某服务不自动启动 chkconfig --level 3 httpd off systemctl disable httpd.service 检查服务状态 service h