13 数据结构和算法——B树,B+树,B*树,R树的总结

B树(英语:B-tree)是一种自平衡的树,能够保持数据有序。这种数据结构能够让查找数据、顺序访问、插入数据及删除的动作,都在对数时间内完成。B树,概括来说是一个一般化的二叉查找树(binary search tree),可以拥有最多2个子节点。与自平衡二叉查找树不同,B树适用于读写相对大的数据块的存储系统,例如磁盘。

  1. 根结点至少有两个子女。

  2. 每个中间节点都包含k-1个元素和k个孩子,其中 m/2 <= k <= m

  3. 每一个叶子节点都包含k-1个元素,其中 m/2 <= k <= m

  4. 所有的叶子结点都位于同一层。

  5. 每个节点中的元素从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域分划。

13 数据结构和算法——B树,B+树,B*树,R树的总结_第1张图片
如图所示就是一颗符合规范的B树,由于相比于磁盘IO的速度,内存中的耗时几乎可以省略,所以只要树的高度足够低,IO次数足够小,就可以提升查询性能。

B树的增加删除同样遵循自平衡的性质,有旋转和换位。

B树的应用是文件系统及部分非关系型数据库索引。

B+ 树:是一种树数据结构,通常用于关系型数据库(如Mysql)和操作系统的文件系统中。B+ 树的特点是能够保持数据稳定有序,其插入与修改拥有较稳定的对数时间复杂度。B+ 树元素自底向上插入,这与二叉树恰好相反。

在B树基础上,为叶子结点增加链表指针(B树+叶子有序链表),所有关键字都在叶子结点 中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中。

b+树的非叶子节点不保存数据,只保存子树的临界值(最大或者最小),所以同样大小的节点,b+树相对于b树能够有更多的分支,使得这棵树更加矮胖,查询时做的IO操作次数也更少。
13 数据结构和算法——B树,B+树,B*树,R树的总结_第2张图片
这通常在多数节点在次级存储比如硬盘中的时候出现。通过最大化在每个内部节点内的子节点的数目减少树的高度,平衡操作不经常发生,而且效率增加了。

B*树:是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针

在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3。

R树是用来做空间数据存储的树状数据结构。例如给地理位置,矩形和多边形这类多维数据建立索引。

R树:的核心思想是聚合距离相近的节点并在树结构的上一层将其表示为这些节点的最小外接矩形(MBR),这个最小外接矩形就成为上一层的一个节点。因为所有节点都在它们的最小外接矩形中,所以跟某个矩形不相交的查询就一定跟这个矩形中的所有节点都不相交。叶子节点上的每个矩形都代表一个对象,节点都是对象的聚合,并且越往上层聚合的对象就越多。也可以把每一层看做是对数据集的近似,叶子节点层是最细粒度的近似,与数据集相似度100%,越往上层越粗糙。

13 数据结构和算法——B树,B+树,B*树,R树的总结_第3张图片

你可能感兴趣的:(数据结构小算法总结)