1、【论文】基于小波变换的信号去噪技术及实现
2、【csdn】小波降噪详解
3、【csdn】小波变换在信号去噪声中的使用
4、【matlab】小波降噪的matlab过程
5、【推荐】小波变换和小波阈值法去噪
load leleccum;
index = 1:1024;
x = leleccum(index);
%产生噪声信号
init = 2055615866;
randn('seed',init);
nx = x + 18*randn(size(x));
%获取消噪的阈值
[thr,sorh,keepapp] = ddencmp('den','wv',nx);
%对信号进行消噪
xd = wdencmp('gbl',nx,'db4',2,thr,sorh,keepapp);
subplot(311);
plot(x);
title('原始信号');
subplot(312);
plot(nx);
title('含噪信号');
subplot(313);
plot(xd);
title('消噪后的信号');
load leleccum;
indx = 1:1024;
x = leleccum(indx);
%产生含噪信号
init = 2055615886;
randn('seed',init);
nx = x + 18*randn(size(x));
%使用小波函数'db6'对信号进行3层分解
[c,l] = wavedec(nx,3,'db6');
%估计尺度1的噪声标准差
sigma = wnoisest(c,l,1);
alpha = 2;
%获取消噪过程中的阈值
thr = wbmpen(c,l,sigma,alpha);
keepapp = 1;
%对信号进行消噪
xd = wdencmp('gbl',c,l,'db6',3,thr,'s',keepapp);
subplot(311);
plot(x);
title('原始信号');
subplot(312);
plot(nx);
title('含噪信号');
subplot(313);
plot(xd);
title('消噪后的信号');
load leleccum;
indx = 1:1024;
x = leleccum(indx);
%产生含噪信号
init = 2055615866;
randn('seed',init);
nx = x + 18*randn(size(x));
%将信号nx使用小波函数'sym5'分解到第5层
%使用mimimaxi阈值选择系数进行处理,消除噪声信号
lev = 5;
xd = wden(nx,'minimaxi','s','mln',lev,'sym5');
subplot(311);
plot(x);
title('原始信号');
subplot(312);
plot(nx);
title('含噪信号');
subplot(313);
plot(xd);
title('消噪后的信号');
load leleccum;
indx = 1:1024;
x = leleccum(indx);
%产生含噪信号
init = 2055615866;
randn('seed',init);
nx = x + 18*randn(size(x));
%使用小波函数'db5'对信号进行3层分解
[c,l] = wavedec(nx,3,'db5');
%设置尺度向量
n = [1,2,3];
%设置阈值向量
p = [100,90,80];
%对高频系数进行阈值处理
nc = wthcoef('d',c,l,n,p);
%对修正后的小波分解结构进行重构
rx = waverec(nc,l,'db5');
subplot(311);
plot(x);
title('原始信号');
subplot(312);
plot(nx);
title('含噪信号');
subplot(313);
plot(rx);
title('消噪后的信号');
【csdn】MATLAB实现小波变换去噪
load leleccum;
indx = 1:1024;
x = leleccum(indx);
%产生含噪信号
init = 2055615866;
randn('seed',init);
s = x + 18*randn(size(x));
N = numel(s);
%小波分解;
[c,l]=wavedec(s,7,'coif5'); %小波基为coif5,分解层数为7层
ca11=appcoef(c,l,'coif5',7); %获取低频信号
cd1=detcoef(c,l,1);
cd2=detcoef(c,l,2); %获取高频细节
cd3=detcoef(c,l,3);
cd4=detcoef(c,l,4);
cd5=detcoef(c,l,5);
cd6=detcoef(c,l,6);
cd7=detcoef(c,l,7);
sd1=zeros(1,length(cd1));
sd2=zeros(1,length(cd2)); %1-3层置0,4-7层用软阈值函数处理
sd3=zeros(1,length(cd3));
sd4=wthresh(cd4,'s',0.014);
sd5=wthresh(cd5,'s',0.014);
sd6=wthresh(cd6,'s',0.014);
sd7=wthresh(cd7,'s',0.014);
c2=[ca11,sd7,sd6,sd5,sd4,sd3,sd2,sd1];
s0=waverec(c2,l,'coif5'); %小波重构
subplot(311);
plot(x);
title('原始信号');
subplot(312);
plot(s);
title('含噪信号');
subplot(313);
plot(s0);
title('消噪后的信号');