- 深度学习图像分类数据集—百种病虫害分类
AI街潜水的八角
深度学习图像数据集深度学习分类人工智能
该数据集为图像分类数据集,适用于ResNet、VGG等卷积神经网络,SENet、CBAM等注意力机制相关算法,VisionTransformer等Transformer相关算法。数据集信息介绍:百种病虫害识别分类,训练集45095张,验证集7508张,测试集22619张具体类别为以下:insect_classes=["rice_leaf_roller","rice_leaf_caterpillar
- 格灵深瞳视觉算法面试30问全景精解
机 _ 长
算法面试职场和发展
格灵深瞳视觉算法面试30问全景精解——AI感知×智能安防×场景创新:格灵深瞳视觉算法面试核心考点全览前言格灵深瞳(GREATVISION)作为国内领先的人工智能与计算机视觉企业,专注于智慧安防、智能交通、智慧零售等领域,推动视觉算法在大规模城市级场景的落地。格灵深瞳视觉算法岗位面试不仅考察候选人对视觉基础理论的扎实掌握,更关注其在复杂场景下的创新能力与工程实践。本文精选30个高质量面试问题,涵盖基
- 喷丝板检测软件上位机开发
深圳市由你创科技
上位机开发c#qt
一、核心功能模块1、硬件控制运动控制:通过Modbus/RS485/EtherCAT控制高精度电移台(需±1μm精度),实现喷丝板XY轴扫描定位。光源控制:调节环形LED/同轴光源亮度(支持PWM或0-10V模拟信号),优化成像对比度。相机控制:支持GigE/USB3Vision相机(建议500万像素以上),触发采集、参数调节(曝光/增益)。2、机器视觉检测孔洞识别:使用OpenCV的HoughC
- PyTorch图像分类系列——流程概览
VAMOT
PyTorch图像分类系列pytorch深度学习分类计算机视觉
一、加载数据1.使用torchvision.datasets的方法加载经典数据集在此网址查看支持哪些经典数据集:Datasets—Torchvision0.18documentation(pytorch.org)data_train=torchvision.datasets.CIFAR10(root="CIFAR10",train=True,transform=ToTensor(),target_
- Pytorch图像二分类代码 AlexNet
望舒向晚
Pytorchpytorch深度学习机器学习
importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorch.utils.dataimporttorch.nn.functionalasFimporttorchvisionfromtorchvisionimporttransformsfromPILimportImagedefcheck_image(path):try:im=Ima
- 基于逻辑回归的图像二分类算法实现(Pytorch版)
哎呦哥哥、
图像分类pytorch逻辑回归分类
基于逻辑回归的图像二分类算法实现(Pytorch版)数据集模型代码数据集链接:FastFoodClassificationDataset我们只使用Burger和Pizza这两类。模型代码importtorchimporttorch.nnasnnfromtorchvision.models.utilsimportload_state_dict_from_urlmodel_urls={'resnet5
- 计算机视觉:人工智能的“眼睛”
人工智能教程
人工智能计算机视觉机器学习算法pytorchpython数据结构
前言在人工智能的众多领域中,计算机视觉(ComputerVision)无疑是其中最为引人注目的方向之一。它赋予了机器“看”的能力,使计算机能够像人类一样理解和解释视觉信息。从自动驾驶汽车到医疗影像诊断,从安防监控到虚拟现实,计算机视觉的应用场景无处不在,深刻地改变着我们的生活和工作方式。本文将深入探讨计算机视觉的核心技术、应用场景以及未来的发展趋势,帮助您全面了解这一充满活力的领域。一、计算机视觉
- OpenCV引擎:驱动实时应用开发的科技狂飙
芯作者
DD:计算机科学领域opencv计算机视觉
在人工智能与计算机视觉技术迅猛发展的今天,实时图像处理已成为工业自动化、自动驾驶、医疗诊断、增强现实等领域的核心技术需求。而**OpenCV(OpenSourceComputerVisionLibrary)**作为全球最活跃的开源计算机视觉库,正以其强大的算法生态、跨平台兼容性以及持续进化的架构设计,成为驱动实时应用开发的“数字引擎”。本文将深入剖析OpenCV如何通过技术创新突破实时处理的性能极
- 【AI论文】EmbRACE-3K: 复杂环境中的具身推理与行为研究
摘要:近期先进的视觉语言模型(Vision-LanguageModels,VLMs)在被动、离线的图像和视频理解任务中展现出了卓越的性能。然而,在具身场景中,这些模型的有效性仍较为有限。具身场景要求在线交互和主动的场景理解,在此类场景中,智能体以第一人称视角感知环境,且每一次动作都会动态地影响后续的观察结果。即便是像GPT-4o、Claude3.5Sonnet和Gemini2.5Pro这样的先进模
- iOS 26 公测版定了,预计下周发布!
lzhdim
ioscocoamacosobjective-c
iOS26公测版定了——7月23日正式开放下载!这是彭博社记者MarkGurman等多方消息源确认的时间,苹果将同步推送iOS26、iPadOS26、macOS26等全家桶系统的公测版本,但VisionPro的visionOS26暂不开放。除iOS26外,同步发布的公测版系统还包括:iPadOS26、macOS26、watchOS26、tvOS26、HomePodSoftware26,AirPod
- Hadoop与图像识别与处理
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Hadoop与图像识别与处理作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在大数据时代,数据的爆炸性增长对数据处理技术提出了新的挑战。图像数据作为一种重要的数据形式,其处理和分析在许多领域中具有重要意义,如医疗影像分析、自动驾驶、安防监控等。然而,传统的图像处理方法在面对海量图像数据时显得力不从心。Hadoop作为一种分
- 论文阅读:LLaVA1.5:Improved Baselines with Visual Instruction Tuning
微风❤水墨
LLM&AIGC&VLPLLM
论文:https://arxiv.org/abs/2310.03744代码:https://github.com/haotian-liu/LLaVA#train微调:https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md模型论文时间VisionEncoderVLAdapterProjectionLaye
- YOLO V8+Python训练手写数字识别
yuanpan
YOLOpython开发语言
以下是针对Windows11+Python环境的详细步骤说明,从数据集整理到模型训练,全部适配YOLOv8流程。1.数据集整理(MNIST→YOLO格式)1.1下载MNIST数据集MNIST数据集可通过Python直接下载(无需手动下载):python复制fromtorchvision.datasetsimportMNISTimportos#自动下载MNIST数据集(图片和标签)train_dat
- Python深度学习实践:LSTM与GRU在序列数据预测中的应用
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:LSTM与GRU在序列数据预测中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来序列数据预测是机器学习领域的一个重要研究方向,涉及时间序列分析、自然语言处理、语音识别等多个领域。序列数据具有时间依赖性,即序列中每个元素都受到前面元素的影响。传统的机器学习算法难以捕捉这种时间依赖性,而深度学习
- opencv、torch、torchvision、tensorflow的区别
一、框架定位与核心差异PyTorch动态计算图:实时构建计算图支持Python原生控制流(如循环/条件),调试便捷。学术主导:2025年工业部署份额24%,适合快速原型开发(如无人机自动驾驶、情绪识别)。TensorFlow静态计算图优化:预编译图结构提升部署效率支持动态图(Eager模式)兼顾灵活性。工业部署首选:市场份额38%,擅长边缘计算(YOLO部署)和大规模项目(工业自动化)-59)。O
- 简单英语语法2 - 可数与不可数名词
louyang
1可数名词这些名词代表的东西,可以被一个个数出来。pen,computer,bottle,spoon,desk,cup,television,chair,shoe,finger,flower,camera,stick,balloon,book,table,comb,etc.大多数名词的复数是-直接+spens,computers,bottles,spoons,desks,cups,televisi
- 深度学习方法生成抓取位姿与6D姿态估计的完整实现
ZPC8210
ROS深度学习人工智能
如何将GraspNet等深度学习模型与6D姿态估计集成到ROS2和MoveIt中,实现高精度的机器人抓取系统。1.系统架构text[RGB-D传感器]→[物体检测与6D姿态估计]→[GraspNet抓取位姿生成]→[MoveIt运动规划]→[执行抓取]2.环境配置2.1安装依赖bash#安装PyTorch(根据CUDA版本选择)pip3installtorchtorchvisiontorchaud
- 神经网络项目--基于FPGA的AI简易项目(1-9图片数字识别)
霖12
深度学习pytorch神经网络fpga开发人工智能机器学习
1.训练MNIST模型importtorch#导入pytorch核心库importtorch.nnasnn#神经网络模块,如卷积层importtorch.optimasoptim#优化器fromtorchvisionimportdatasets,transforms#数据集与图像预处理工具#定义CNN模型classSimpleCNN(nn.Module):#PyTorch库中所有神经网络的“基础模
- 中国计算机学会(CCF)推荐学术会议-C(人机交互与普适计算):COLLABORATECOM 2025
EAICollaborateCom2025,recognizedbytheprestigiousChinaComputerFederation(CCF)ranking,standsasaleadingglobaleventincomputerscience.AstheconferencewilltakeplaceinShanghai,China,theeventoffersauniqueplatf
- ARMv8架构
weizhideshenghuo
ARMarm
ARMarchitecturePE(processingelement):采取ARM架构的处理器RISC(reducedinstructionsetcomputer):精简指令集架构:AArch64:64位架构,地址和指令都是64位寄存器提供31个64位通用寄存器,X30用作过程链接寄存器提供1个64位程序计数器PC(programcounter),栈指针SPs(stackpointers),异常
- 嵌入式学习-PyTorch(3)-day20
LGGGGGQ
学习pytorch人工智能
transforms结构及用法transforms.yp是一个工具箱就是将一个特定格式的图片经过这个工具的到想要的变换Tensor数据类型一、transforms的使用(Python)fromPILimportImagefromtorch.utils.tensorboardimportSummaryWriterfromtorchvisionimporttransformswriter=Summar
- 嵌入式学习-PyTorch(4)-day21
LGGGGGQ
学习
1、torchvision中数据集的使用认识官方的一些数据集Datasets—Torchvision0.22documentation试了一下CIFAR10数据集,知道了如何下载官方数据集和展示他们去tensorboard中importtorchvisionfromtorch.utils.tensorboardimportSummaryWriter#处理数据集dataset_transform=t
- OpenCV 入门指南 —— 从环境搭建到图像处理
m0_74751715
opencv图像处理人工智能python
文章目录前言一、什么是OpenCV?二、环境准备与安装1.Python虚拟环境2.安装OpenCV3.验证安装三、读取与显示图像四、常见图像处理操作1.色彩空间转换2.图像平滑(模糊)3.边缘检测(Canny算法)4.在图像上绘制图形与文字五、视频与摄像头操作六、推荐学习路线七、参考资料前言在计算机视觉领域,OpenCV(OpenSourceComputerVisionLibrary)凭借其开源、
- Python机器学习教程
Python机器学习教程(MachineLearningwithPythonTutorial)PDFVersionQuickGuideResourcesJobSearchDiscussionPDF版本快速指南资源资源求职讨论区MachineLearning(ML)isbasicallythatfieldofcomputersciencewiththehelpofwhichcomputersyste
- Lan的ScalersTalk第四轮新概念朗读持续力训练Day 288 20190722
孙岚_9ff8
练习材料:[Day17602019-07-22]Lesson24-2BeautyThereisnoskyinJunesobluethatitdoesnotpointforwardtoabluer,nosunsetsobeautifulthatitdoesnotwakenthevisionofagreaterbeauty,avisionwhichpassesbeforeitisfullyglimps
- 深度学习图像分类数据集—桃子识别分类
AI街潜水的八角
深度学习图像数据集深度学习分类人工智能
该数据集为图像分类数据集,适用于ResNet、VGG等卷积神经网络,SENet、CBAM等注意力机制相关算法,VisionTransformer等Transformer相关算法。数据集信息介绍:桃子识别分类:['B1','M2','R0','S3']训练数据集总共有6637张图片,每个文件夹单独放一种数据各子文件夹图片统计:·B1:1601张图片·M2:1800张图片·R0:1601张图片·S3:
- 用Python和OpenCV从零搭建一个完整的双目视觉系统(三)
presenttttt
双目立体视觉数码相机
本系列文章旨在系统性地阐述如何利用Python与OpenCV库,从零开始构建一个完整的双目立体视觉系统。本项目github地址:https://github.com/present-cjn/stereo-vision-python.git在上一篇文章中,我们为项目设计了清晰的架构。现在,我们将深入第一个,也是整个双目视觉系统最关键的模块——相机标定(CameraCalibration)。如果说双目
- OpenCV入门到精通:从基础到实战的全面指南
摘要:本文旨在为初学者和有一定经验的开发者提供OpenCV从入门到精通的全面指南。文章首先介绍了OpenCV的基本概念和安装方法,然后深入讲解了图像处理基础、特征检测与匹配、视频处理与分析等核心内容,最后通过实战案例展示了OpenCV在计算机视觉任务中的应用。关键词:OpenCV;图像处理;特征检测;视频分析;实战案例引言OpenCV(OpenSourceComputerVisionLibrary
- 第35周—————糖尿病预测模型优化探索
目录目录前言1.检查GPU2.查看数据编辑3.划分数据集4.创建模型与编译训练5.编译及训练模型6.结果可视化7.总结前言本文为365天深度学习训练营中的学习记录博客原作者:K同学啊1.检查GPUimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvision,torch#设置硬件设备,如果有GPU则使用,没有则使用cpudevice=
- 计算机领域顶级会议汇总
hongyanee
parallelperformanceprocessing分布式计算networkingsecurity
转自ustcxjt的专栏:http://blog.csdn.net/ustcxjt/article/details/7075534COREComputerScienceConferenceRankingsAcronymStandardNameRankAAAINationalConferenceoftheAmericanAssociationforArtificialIntelligenceA+AA
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟