关键的LDO指标和定义

备注:制造商数据手册首页一般是一些摘要信息,通常突出了一些吸引人的器件特性。关键参数经常强调典型的性能特征,但只有查阅了文档中的完整指标和其它数据后才能得到更完整的理解。另外,由于制造商提供指标的方式几乎没有标准可言,因此电源设计师需要理解用来获得电气指标表格中列出的关键参数的定义和方法。系统设计师应该密切关注关键参数,如环境和结点温度范围、图形信息中的X-Y刻度值 、负载、瞬态信号的上升和下降时间以及带宽。下面讨论与ADI公司LDO的表征和应用有关的一些重要参数。

输入电压范围:LDO的输入电压范围决定了最低的可用输入电源电压。指标可能提供宽的输入电压范围,但最低输入电压必须超过压降加上想要的输出电压值。例如,150mV的压降对于稳定的2.8V输出来说意味着输入电压必须大于2.95V。如果输入电压低于2.95V,输出电压将低于2.8V。

接地(静态)电流:静态电流Iq就是输入电流IIN和负载电流IOUT之间的差值,在规定的负载电流条件下测量。对于固定电压稳压器,Iq等于接地电流Ig。对于可调稳压器,如ADP1715,静态电流等于接地电流减去来自外部分压电阻网络中的电流。

关断电流:这是指设备禁用时LDO消耗的输入电流,对便携LDO来说通常低于1.0 µA。这个指标对于便携设备关机时长待机期间的电池寿命来说很重要。

输出电压精度:ADI公司的LDO具有很高的输出电压精度,在工厂制造时就被精确调整到±1%之内(25℃)。输出电压精度在工作温度、输入电压和负载电流范围条件下加以规定。误差规定为±x%最差情况。

线路调整率:线路调整率是指输出电压随输入电压变化而发生的变化率。为了避免由于芯片温度变化引起的误差,线路调整率的测量通常在低功耗状态或使用脉冲技术进行。

动态负载调整率:只要负载电流缓慢变化,大多数LDO都能轻松地保持输出电压接近恒定不变。然而,当负载电流快速改变时,输出电压也将发生改变。当负载电流发生变化时输出电压会改变多少就决定了负载瞬态性能。

压差:压差指保持电压稳定所需的输入电压和输出电压之间的最小差值。也就是说,LDO能够在输入电压降低时保持输出负载电压不变,直到输入电压接近输出电压加上压差,在这个点输出电压将“失去”稳定。压差应尽可能小,以使功耗最小,效率最高。当输出电压降低到低于标称值 100mV的电压时,通常被认为达到了这个压差。负载电流和结点温度会影响这个压差。最大压差值应在整个工作温度范围和负载电流条件下加以规定。

启动时间:启动时间被定义为使能信号的上升沿到VOUT接近其标称值的90%时的时间。这个测试通常是接上VIN、使能引脚从断开到接通的触发条件下进行测量。备注:在使能引脚连接VIN的某些情况下,启动时间可能会大幅增加,因为带隙参考需要一定的稳定时间。在稳压器需要频繁关闭和启动以节省功耗的便携系统中,稳压器的启动时间是一个重要的考虑因素。

限流阈值:限流阈值被定义为输出电压下降到给定典型值的90%时的负载电流。例如,3V输出电压的限流阈值被定义为造成输出电压下降到3.0V的90%或2.7V时的负载电流。

工作温度范围:工作温度范围可以由环境温度和结点温度加以规定。由于LDO会发热,因此IC的工作温度总是超过环境温度,比环境温度高出多少取决于工作状态和PCB热设计。数据手册上规定有最大结点温度(TJ),因为在最大结点温度之上工作过长的时间会影响器件的可靠性——统计学上称为平均故障时间(MTTF)。

热关断(TSD):大多数LDO具有自动温度调节装置,用于防止IC发生热失控。当结点温度超过规定的热关断阈值时,这个装置将关断LDO。为了在重启之前让LDO冷却下来,要求一定的滞后时间。TSD很重要,因为它不单单保护LDO;过多的热量影响的不止是稳压器。从LDO传导到PCB(或从电路板上更热的元件传导到LDO)的热量随着时间的推移可能破坏PCB材料和焊接可靠性,也会破坏附近元件,进而缩短便携设备的寿命。另外,热关断将影响系统的可靠性。因此,用于控制电路板温度的热设计(散热器、冷却装置等)是重要的系统考虑因素。

使能输入:LDO使能信号以正和负逻辑的形式提供,用于关闭和启动LDO。高电平有效逻辑在使能端电压超过逻辑高电平门限时使能器件,低电平有效逻辑在使能端电压低于逻辑低门限电平时使能器件。使能输入允许外部控制LDO的关闭和启动,这是多电压轨系统中调整电源上电顺序的一个重要特性。一些LDO具要相当短的启动时间,因为它们的带隙参考在LDO禁用时是打开的,允许LDO更快地启动。

欠压闭锁:欠压闭锁(UVLO)可以确保只有在系统输入电压高于规定阈值时才向负载输出电压。UVLO很重要,因为它只在输入电压达到或超过器件稳定工作要求的电压时才让LDO器件上电。

输出噪声:LDO的内部带隙电压参考是噪声源,通常用给定带宽范围内的毫伏有效值表示。例如,ADP121在VOUT为1.2V时,在10kHz至100kHz的带宽范围内有40µV rms的输出噪声。在比较数据手册指标时,给定的带宽和工作条件是重要的考虑因素。

电源抑制比:电源抑制比(PSR)用分贝表示,代表了LDO在宽的频范围(1kHz至100kHz)内对来自输入电源的纹波的抑制能力。在LDO中,PSR可以用两个频段表征。频段1从直流到控制环路的单位增益频率,这时的PSR取决于稳压器的开环增益。频段2在单位增益频率之上,这时的PSR不受反馈环路的影响,PSR取决于输出电压以及从输入到输出引脚的任何泄漏路径。选择一个适合的高值输出电容通常会改善后个频段的PSR。在频段1,ADI公司专有的电路设计可以减少由于输入电压和负载变化引起的PSR变化。为了获得最佳的电源抑制性能,PCB版图设计时必须考虑减小从输入到输出的泄漏,而且要有鲁棒性的接地性能。

最小输入和输出电容:最小输入和输出电容应大于在各种工作条件 (尤其是工作电压和温度) 下的规定值。在器件选型时必须考虑应用中的各种工作条件,确保满足最小的电容规格。推荐使用X7R和X5R型电容。Y5V和Z5U电容不推荐在任何LDO电路中使用。

反向电流保持特性:采用PMOS传输管的典型LDO在VIN和VOUT之间有一个本征体二极管。当VIN大于VOUT时,这个二极管将处于反偏状态。如果VOUT大于VIN,这个本征二极管将变成前向偏置,产生从VOUT到VIN的电流,进而造成破坏性的功耗。一些LDO,如ADP1740/ADP1741,有额外的电路防止从VOUT到VIN的反向电流流动。反向电流保护电路检测到VOUT超过VIN时,将反转本征二极管连接的方向,使二极管仍处于反偏状态。

软启动:可编程软启动有助于减小启动时的浪涌电流和提供上电顺序。对于启动时要求浪涌电流受控的应用,有些LDO(如ADP1740/ADP1741)提供了可编程的软启动(SS)功能。为了实现软启动,在SS和地引脚之间需要连接一个小的陶瓷电容。

结束语

LDO执行的是一个重要功能。虽然概念上很简单,但在应用时需要考虑许多方面的因素。

你可能感兴趣的:(关键的LDO指标和定义)