AC自动机

今天写一下基本的AC自动机的思想原理和实现。

Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一。一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章,让你找出有多少个单词在文章里出现过。要搞懂AC自动机,先得有模式树(字典树)Trie和KMP模式匹配算法的基础知识。

KMP:https://blog.csdn.net/hebtu666/article/details/79822446

KMP算法是单模式串的字符匹配算法,AC自动机是多模式串的字符匹配算法。

首先我们回忆一下KMP算法:失配之后,子串通过next数组找到应该匹配的位置,也就是最长相等前后缀。

AC自动机也是一样,只不过是匹配到当前失配之后,找到当前字符串的后缀,和所有字符串的前缀,找出最长相等前后缀。

就这么简单。

当然,字典树的知识是需要了解的。

https://blog.csdn.net/hebtu666/article/details/83141560

我就默认读者都会字典树了。

我们操作的第一步就是把那些单词做一个字典树出来,这个好理解。

 

在AC自动机中,我们也有类似next数组的东西就是fail指针,当发现失配的字符失配的时候,跳转到fail指针指向的位置,然后再次进行匹配操作

当前节点t有fail指针,其fail指针所指向的节点和t所代表的字符是相同的。因为t匹配成功后,我们需要去匹配t->child,发现失配,那么就从t->fail这个节点开始再次去进行匹配。

KMP里有详细讲解过程,我就不占篇幅叙述了。

然后说一下fail指针如何建立:

和next数组大同小异。如果你很熟悉next数组的建立,fail指针也是一样的。

假设当前节点为father,其孩子节点记为child。求child的Fail指针时,首先我们要找到其father的Fail指针所指向的节点,假如是t的话,我们就要看t的孩子中有没有和child节点所表示的字母相同的节点,如果有的话,这个节点就是child的fail指针,如果发现没有,则需要找father->fail->fail这个节点,然后重复上面过程,如果一直找都找不到,则child的Fail指针就要指向root。

KMP也是一样的的操作:p[next[i-1]]p[next[next[i-1]]]这样依次往前跳啊。

 

如果跳转,跳转后的串的前缀,必为跳转前的模式串的后缀并且跳转的新位置的深度(匹配字符个数)一定小于跳之前的节点。所以我们可以利用 bfs在 Trie上面进行 fail指针的求解。流程和NEXT数组类似。

 

匹配的时候流程也是基本一样的,请参考KMP或者直接看代码:

HDU 2222 Keywords Search    最基本的入门题了

就是求目标串中出现了几个模式串。

很基础了。使用一个int型的end数组记录,查询一次。

#include 
#include 
#include 
#include 
#include 
using namespace std;

struct Trie
{
    int next[500010][26],fail[500010],end[500010];
    int root,L;
    int newnode()
    {
        for(int i = 0;i < 26;i++)
            next[L][i] = -1;
        end[L++] = 0;
        return L-1;
    }
    void init()
    {
        L = 0;
        root = newnode();
    }
    void insert(char buf[])
    {
        int len = strlen(buf);
        int now = root;
        for(int i = 0;i < len;i++)
        {
            if(next[now][buf[i]-'a'] == -1)
                next[now][buf[i]-'a'] = newnode();
            now = next[now][buf[i]-'a'];
        }
        end[now]++;
    }
    void build()//建树
    {
        queueQ;
        fail[root] = root;
        for(int i = 0;i < 26;i++)
            if(next[root][i] == -1)
                next[root][i] = root;
            else
            {
                fail[next[root][i]] = root;
                Q.push(next[root][i]);
            }
        while( !Q.empty() )//建fail
        {
            int now = Q.front();
            Q.pop();
            for(int i = 0;i < 26;i++)
                if(next[now][i] == -1)
                    next[now][i] = next[fail[now]][i];
                else
                {
                    fail[next[now][i]]=next[fail[now]][i];
                    Q.push(next[now][i]);
                }
        }
    }
    int query(char buf[])//匹配
    {
        int len = strlen(buf);
        int now = root;
        int res = 0;
        for(int i = 0;i < len;i++)
        {
            now = next[now][buf[i]-'a'];
            int temp = now;
            while( temp != root )
            {
                res += end[temp];
                end[temp] = 0;
                temp = fail[temp];
            }
        }
        return res;
    }
    void debug()
    {
        for(int i = 0;i < L;i++)
        {
            printf("id = %3d,fail = %3d,end = %3d,chi = [",i,fail[i],end[i]);
            for(int j = 0;j < 26;j++)
                printf("%2d",next[i][j]);
            printf("]\n");
        }
    }
};
char buf[1000010];
Trie ac;
int main()
{
    int T;
    int n;
    scanf("%d",&T);
    while( T-- )
    {
        scanf("%d",&n);
        ac.init();
        for(int i = 0;i < n;i++)
        {
            scanf("%s",buf);
            ac.insert(buf);
        }
        ac.build();
        scanf("%s",buf);
        printf("%d\n",ac.query(buf));
    }
    return 0;
}

 

你可能感兴趣的:(数据结构与算法)