- RAG 调优指南:Spring AI Alibaba 模块化 RAG 原理与使用
ApacheDubbo
spring人工智能架构SpringAIRAG
>夏冬,SpringAIAlibabaContributorRAG简介什么是RAG(检索增强生成)RAG(RetrievalAugmentedGeneration,检索增强生成)是一种结合信息检索和文本生成的技术范式。核心设计理念RAG技术就像给AI装上了「实时百科大脑」,通过先查资料后回答的机制,让AI摆脱传统模型的"知识遗忘"困境。️四大核心步骤1.文档切割→建立智能档案库核心任务:将海量文档
- Python爬虫实战:研究jieba相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmljieba分词
1.引言1.1研究背景与意义随着互联网技术的飞速发展,网络新闻已成为人们获取信息的主要渠道之一。每天产生的新闻文本数据量呈爆炸式增长,如何从海量文本中高效提取有价值的信息,成为信息科学领域的重要研究课题。文本分析技术通过对文本内容的结构化处理和语义挖掘,能够揭示隐藏在文本中的主题、情感和趋势,为舆情监测、信息检索、内容推荐等应用提供技术支持。1.2研究目标与方法本研究旨在构建一个完整的新闻文本分析
- 黑客自学教程(非常详细)黑客零基础入门到精通,收藏这篇就够了
爱吃小石榴16
网络安全黑客技术黑客网络服务器运维android数据库web安全安全
新手如何通过自学黑客技术成为厉害的白帽黑客?我目前虽然算不上顶尖的白帽大佬,但自己在补天挖漏洞也能搞个1万多块钱。给大家分享一下我的学习方法,0基础也能上手学习,如果你能坚持学完,你也能成为厉害的白帽子!一、打好基础一上来就去玩各种工具的都是脚本小子,如果你是准备在技术这条路上走得长远,那这些必备的基础知识一定要学好。1.网络安全基础导论尤其是法律法规和发展方向,一定要对网络安全有清楚的认知!2.
- 多模态查询技术:让搜索更智能、更精准
搜索引擎技术
ai
多模态查询技术:让搜索更智能、更精准关键词:多模态查询、跨模态搜索、语义理解、向量检索、深度学习、信息检索、人工智能摘要:本文深入探讨多模态查询技术如何通过整合文本、图像、音频等多种数据形式,实现更智能、更精准的搜索体验。我们将从基础概念出发,逐步解析技术原理,并通过实际案例展示其应用价值,最后展望未来发展趋势。背景介绍目的和范围本文旨在全面介绍多模态查询技术,包括其核心概念、工作原理、实现方法和
- 搜索领域个性化排序:如何利用生成式AI提升效果?
搜索引擎技术
人工智能ai
搜索个性化排序的生成式AI增强:从理论框架到实践落地的系统解析关键词生成式AI、个性化排序、搜索系统、用户意图建模、多模态信息融合、排序优化、智能检索摘要本报告系统解析如何通过生成式AI技术提升搜索领域的个性化排序效果。从理论框架出发,结合信息检索第一性原理与生成式模型的核心优势,构建"用户-查询-文档"三元组的深度关联模型;通过层次化架构设计,覆盖用户建模、查询理解、文档表示到排序决策的全流程;
- 0_序章导论
39036953
吴恩达《AIfor人工智能
课程整体框架时长:4周终极目标:学完后比大公司CEO更懂AI,能领导团队解决实际问题每周核心内容分解第一周:重新认识AI的本质弱AI(ANI)vs.强AI(AGI)ANI(弱人工智能):特点:只精通单一任务(如语音助手、自动驾驶)现状:已创造巨大价值,未来将在零售、制造、交通等非软件行业爆发AGI(强人工智能):目标:达到或超越人类全能智能真相:数十年内难以突破,无需担忧"机器人灭绝人类"破除AI
- C语言结构体完全指南
Morpheon
Cc语言算法开发语言
结构体(Structures)在C语言中允许将不同类型的变量组合在一起,为数据抽象和组织提供了强大的工具。本文涵盖了《comp20005C语言数值计算导论》第8章的关键概念,重点介绍结构体、其操作、与函数的交互、指针和数组。包含代码示例和练习解答以加深理解。1.声明结构体结构体是一个可能包含不同类型变量的集合,通过成员名称访问。typedef关键字通常用于定义程序范围内使用的结构体类型。示例:行星
- 算法导论:动态规划-钢条切割
tttoff
算法动态规划
一、动态规划定义区别于分治法,动态规划(dynamicprogramming)的子问题是有重叠的。常用于最优化问题(optimizationproblem)。二、钢条切割问题2.1步骤分解(1)刻画最优解的结构特征如何得到最大的收益->切割or不切割->则最大收益可以由两个子方案组成,即最大收益=max(不切割的收益,切割的收益)(2)递归地定义最优解的值不切割的收益的已知,则需定义切割的收益。由
- 算法导论第十四章 B树与B+树:海量数据的守护者
W说编程
算法导论数据结构与算法算法b树c语言数据结构性能优化
第十四章B树与B+树:海量数据的守护者“数据不是信息,信息不是知识,知识不是理解。”——CliffordStoll在信息爆炸的时代,我们需要高效管理海量数据的能力。B树家族作为数据库和文件系统的基石,完美平衡了磁盘I/O效率和内存利用率,成为处理大规模数据的首选数据结构。14.1B树的诞生背景14.1.1磁盘与内存的速度鸿沟现代计算机系统中,磁盘访问速度比内存慢10万倍以上。当数据量超过内存容量时
- Spring Boot + LangChain 构建 RAG 应用
程序员丸子
langchainAI大模型语言模型自然语言处理人工智能大语言模型RAG
使用LangChain构建RAG应用程序什么是RAG?检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种结合了检索和生成两种关键技术的机器学习方法。这种方法在自然语言处理任务中特别有效,例如对话系统和问答系统。RAG的关键组件检索:•RAG首先从大型数据集或知识库中检索与用户查询相关的文档或数据。•通常使用信息检索技术,如向量搜索或关键词匹配。生成:•在检索到
- 【Elasticsearch】TF-IDF 和 BM25相似性算法
risc123456
Elasticsearchelasticsearch
在Elasticsearch中,TF-IDF和BM25是两种常用的文本相似性评分算法,但它们的实现和应用场景有所不同。以下是对这两种算法的对比以及在Elasticsearch中的使用情况:TF-IDF-定义与原理:TF-IDF是一种经典的信息检索算法,用于评估一个词语对于一个文件集或语料库中某份文件的重要程度。它由两部分组成:-TF(TermFrequency):词频,即词语在文档中出现的次数。-
- 奇点思维:大型语言模型强化推理探秘之旅
步子哥
AGI通用人工智能语言模型人工智能自然语言处理
当你凝视夜空中闪烁的点点星辰,不难联想到人类思维的复杂性。正如诺姆·乔姆斯基曾言:“如果语言贫乏,那么思维也将贫乏。”如今,我们正处于一个由大型语言模型(LLMs)引领的新时代——在这些模型的背后,不仅蕴含着海量数据的洗礼,更有着层层递进的推理能力。本文将聚焦论文《迈向大型推理模型:大型语言模型强化推理综述》所揭示的核心思想,通过引人入胜的叙述为你还原这一前沿领域的点点滴滴。导论:人类语言与机器思
- LangChain、RAG、Agent是什么
ZhangJiQun&MXP
2021AIpython2024大模型以及算力教学langchain语言模型人工智能算法自然语言处理
LangChain、RAG、Agent是什么在本地部署基于DeepSeek-R1模型的商用级知识库系统,旨在帮助开发者搭建智能知识库,提升企业智能化水平。背景与技术概述:随着大语言模型和RAG技术发展,AI知识库广泛应用于各行业,但传统信息管理系统存在问题,大模型也有“幻觉”现象。RAG技术将信息检索与生成模型结合,能缓解“幻觉”,而Agent智能体和LangChain框架可满足复杂业务需求。本地
- Coggle数据科学 | Kaggle赛题解析:识别数据引用与分类
双木的木
深度学习拓展阅读分类数据挖掘人工智能计算机视觉promptpython算法
本文来源公众号“Coggle数据科学”,仅用于学术分享,侵权删,干货满满。原文链接:Kaggle赛题解析:识别数据引用与分类赛题名称:MakeDataCount-FindingDataReferences赛题类型:自然语言处理、信息检索赛题任务:从科学论文的全文中提取所有被引用的研究数据,并根据上下文将其分类为初级引用(Primary)或次级引用(Secondary)。https://www.ka
- 算法导论第十八章 计算几何:算法中的空间艺术
第十八章计算几何:算法中的空间艺术“几何学是描绘宇宙秩序的永恒诗篇。”——约翰内斯·开普勒计算几何将数学的优雅与算法的实用性完美结合,在计算机图形学、机器人导航和地理信息系统中扮演着关键角色。本章将带您探索几何问题的算法解决方案,从基础的点线关系到复杂的空间剖分,揭示算法如何理解和操纵我们的几何世界。18.1几何基础:点、线和多边形18.1.1几何对象的表示在计算几何中,我们使用简洁的数学结构表示
- 算法导论第十六章 van Emde Boas树:对数对数的奇迹
W说编程
算法导论数据结构与算法算法数据结构c语言性能优化全文检索数据库
第十六章vanEmdeBoas树:对数对数的奇迹“在数据结构的宇宙中,有些星星的光芒需要特殊工具才能看见。”vanEmdeBoas树(vEB树)是计算机科学中最优雅的数据结构之一,它将整数集合操作的时间复杂度从O(logn)降到了惊人的O(loglogU)。本章将揭开这种神奇结构的面纱,展示它如何在小整数集合处理中实现近乎即时的操作。16.1vEB树的诞生:解决整数集合的瓶颈16.1.1整数集合操
- 算法导论第十三章 红黑树:平衡的艺术
W说编程
算法导论数据结构与算法算法c语言数据结构性能优化b树排序算法
第十三章红黑树:平衡的艺术“平衡不是静止,而是动态的和谐。”——达芬奇在二叉搜索树的世界中,红黑树如同一位优雅的舞者,在动态操作中保持着完美的平衡。本章将揭开这种高效数据结构的神秘面纱,探索它如何在插入和删除操作中保持优雅姿态。13.1红黑树的诞生:解决BST的致命缺陷13.1.1BST的退化问题在第十二章中,我们看到二叉搜索树在极端情况下会退化为链表,操作复杂度从O(logn)恶化为O(n)。1
- 李宏毅【生成式AI导论 2024】第1讲:生成式AI是什么?
AIshape
AIGC知识库人工智能AIGC
什么是人工智能?人工智慧可以说是一个目标,是一个我们想要达到的目标。它不是一个单一的技术,并没有哪一个技术叫做人工智慧,人工智慧是一个目标。什么是生成式人工智能?生成式人工智慧是要机器产生复杂而有结构的物件。比如说文章,文章也有一连串的文字所构成的。比如说影像,影像是由一堆像素所组成的。比如说语音,语音是由一堆取样点所组成的。所谓的复杂有结构又是什么意思呢?这个复杂到底应该要复杂到什么程度呢?要复
- 大模型RAG高阶面试指南:第一章:RAG绪论
强化学习曾小健3
大模型RAG高阶面试指南人工智能深度学习
第一章:RAG绪论1.1RAG的定义、背景与核心思想检索增强生成(RetrievalAugmentedGeneration,简称RAG)是一种结合了信息检索和文本生成的人工智能技术。它通过在生成过程中动态检索相关信息来增强大型语言模型的能力,从而提供更准确、更及时、更可靠的回答。RAG的核心思想是将"参数化知识"(存储在模型参数中的知识)与"非参数化知识"(存储在外部知识库中的知识)相结合,通过检
- 实现RAG融合以提升信息检索精准度
zbb258
javascriptpythonlangchain
在信息检索领域,如何从浩如烟海的信息中精准地获得答案是一个巨大的挑战。RAG(Retrieval-AugmentedGeneration)融合就是一种创新的解决方案。本文将介绍RAG融合的技术背景、核心原理,并提供多个代码片段,展示如何使用这一技术进行信息检索。技术背景介绍RAG融合结合了信息检索和生成式模型的优势。它可以通过生成多个查询,从而提高搜索结果的综合质量,并利用互惠排名融合方法对搜索结
- 自然语言处理分类
要奋斗呀
自然语言处理
NLP学习Nlp基本分类NLP领域的任务分为两个类别:第一类是人工智能NLP。包括词性标注,分词,语法解析,语言模型,信息检索,信息抽取,语义表示,文本分类。这些任务发展较为成熟,各种相关工作的主要目的是提高当前模型的性能。第二类是人工智障NLP。包括机器翻译,对话系统,问答系统。目前模型的性能尚不尽如人意,有些任务上甚至没有足够多的,真正有影响力的工作。一、文本分类--情感分类1.定义情感分类是
- Qwen3-Embedding-Reranker本地部署教程:8B 参数登顶 MTEB 多语言榜首,100 + 语言跨模态检索无压力!
算家计算
模型构建embeddingQwen3Qwen3-Reranker模型部署教程智能检索算家云镜像社区
一、简介Qwen3-Embedding与Qwen3-Reranker是阿里巴巴通义实验室于今年6月开源的双模型系列,专为文本表征、检索与排序任务设计。基于Qwen3基础模型构建,二者通过协同工作显著提升语义理解与信息检索效率,在多语言场景和工业部署中表现卓越。基于Qwen3系列的密集基础模型,提供了各种大小(0.6B、4B和8B)的全面文本嵌入和重新排序模型。该系列继承了其基础模型出色的多语言能力
- 如何使用EnsembleRetriever结合多个检索器的结果
weixin_43212959
windows人工智能microsoft
在信息检索领域,融合不同检索器的结果可以提升搜索结果的质量。EnsembleRetriever是一个支持将多个检索器的结果组合起来的工具。它通过复合互排名融合算法(ReciprocalRankFusion)重新排序各个检索器的结果,以实现更好的性能。技术背景介绍在搜索和信息检索中,"混合搜索"模式成为一种常见的做法。混合搜索通常结合稀疏检索器(如BM25)和密集检索器(如基于嵌入的相似性)。稀疏检
- 《阿里新神器MaskSearch问世:为何我们需要打破传统搜索代理训练的枷锁?》
来自于狂人
语言模型人工智能python
引言:当搜索遇到AI,一场看不见的革命正在发生"百度一下,你就知道"的时代已经成为过去。在今天这个信息爆炸的数字世界,我们需要的不是更多的信息,而是更精准、更智能、更懂人心的信息检索方式。阿里巴巴最近开源的MaskSearch技术,正在悄然改变着搜索代理(SearchAgent)训练的游戏规则。想象这样的场景:你正在寻找一款适合新手入门的单反相机,输入"最好的入门单反"后,传统的搜索引擎可能会给你
- 使用 LangChain 实现多用户文档检索
yunwu12777
langchain服务器数据库
在构建信息检索应用时,通常需要支持多个用户,并确保每个用户只能访问自己的数据。这篇文章将展示如何配置检索链的运行时属性,以限制可用文档,并提供一个使用Pinecone向量存储实现的示例。技术背景介绍在多用户环境中,每个用户的数据必须是隔离的。这意味着您的检索系统需要能够区分和隔离不同用户的数据。实现这一点的关键在于使用向量存储时能够区分不同用户的数据域。核心原理解析许多向量存储系统(如Pineco
- 使用Weaviate和LangChain实现RAG (检索增强生成)
在现代的AI应用中,RAG(检索增强生成)技术通过将生成模型与外部知识库结合,提供了一个强大的信息检索和处理方法。本次分享将会介绍如何使用Weaviate作为知识库,并结合LangChain实现一个RAG应用。技术背景介绍RAG技术通过结合生成式AI和检索系统,能够在大规模语料库中找到相关信息来增强生成模型的回答精确度。Weaviate是一个灵活且可扩展的向量数据库,非常适合用于RAG系统中的知识
- LLM OS 中的自然语言搜索引擎
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLMOS中的自然语言搜索引擎关键词:大语言模型、操作系统、自然语言搜索、语义理解、信息检索、人工智能、用户交互文章目录LLMOS中的自然语言搜索引擎1.背景介绍2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.2算法步骤详解3.3算法优缺点3.4算法应用领域4.数学模型和公式&详细讲解&举例说明4.1数学模型构建4.2公式推导过程4.3案例分析与讲解5.项目实践:代码实例和详
- 算法导论第四章:分治策略的艺术与科学
W说编程
算法导论数据结构与算法算法数据结构c语言性能优化
算法导论第四章:分治策略的艺术与科学本文是《算法导论》精讲专栏第四章,通过问题分解可视化、递归树分析和数学证明,结合完整C语言实现,深入解析分治策略的精髓。包含最大子数组、矩阵乘法、最近点对等经典问题的完整实现与优化技巧。1.分治策略:化繁为简的智慧1.1分治法核心思想原问题分解子问题1子问题2子问题n解决合并最终解分治三步曲:分解:将问题划分为规模更小的子问题解决:递归解决子问题(基线条件直接求
- 算法导论第五章:概率分析与随机算法的艺术
W说编程
算法导论数据结构与算法算法数据结构c语言概率论
算法导论第五章:概率分析与随机算法的艺术本文是《算法导论》精讲专栏第五章,通过概率模型可视化、随机实验模拟和数学证明,结合完整C语言实现,深入解析概率分析与随机算法的精髓。包含生日悖论、赠券收集、随机快速排序、蓄水池抽样等经典问题的完整实现与数学分析。1.概率分析基础:从直觉到数学1.1生日悖论:违反直觉的概率问题:一个房间需要多少人,才能使其中两人生日相同的概率超过50%?#includedou
- 《算法导论(第4版)》阅读笔记:p175-p181
算法
《算法导论(第4版)》学习第31天,p175-p181总结,总计7页。一、技术总结无。二、英语总结(生词:1)1.amortize(1)amortize:a-("to")+mortus("dead")vt.amortizeoriginallymeans"tokilloff",overtime,itevolvestomean"topayoffgraduallybyperiodicpaymentsof
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C