- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- 联邦学习算法安全优化与可解释性研究
智能计算研究中心
其他
内容概要本研究围绕联邦学习算法的安全性优化与模型可解释性增强展开系统性探索。首先,针对联邦学习中数据隐私泄露与模型性能损耗的固有矛盾,提出一种融合差分隐私与动态权重聚合的协同优化框架,通过分层加密机制降低敏感信息暴露风险。其次,引入可解释性算法(如LIME与SHAP)构建透明化决策路径,结合注意力机制实现特征贡献度的可视化映射,有效提升模型在医疗影像异常检测与金融欺诈识别场景中的可信度。此外,研究
- 下一代模型技术演进与场景应用突破
智能计算研究中心
其他
内容概要当前模型技术正经历多维度的范式跃迁,可解释性模型与自动化机器学习(AutoML)成为突破传统黑箱困境的核心路径。在底层架构层面,边缘计算与量子计算的融合重构了算力分配模式,联邦学习技术则为跨域数据协作提供了安全可信的解决方案。主流框架如TensorFlow和PyTorch持续迭代优化能力,通过动态参数压缩与自适应超参数调优策略,显著提升模型部署效率。应用层创新呈现垂直化特征,医疗诊断模型通
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 医疗影像联邦学习可解释性算法研究
智能计算研究中心
其他
内容概要医疗影像分析领域的联邦学习技术正面临数据隐私保护与模型可解释性的双重挑战。本研究以跨机构医疗影像协作场景为核心,系统性探讨联邦学习框架下可解释性算法的创新路径,重点解决医疗AI模型在分布式训练中的透明度缺失问题。通过引入动态特征选择机制与可解释性注意力模块,算法在保持数据本地化处理的同时,实现了关键病灶特征的跨域关联与可视化解析。研究同步整合自动化数据增强流程与多维度评估指标(如F1值、召
- 麦萌短剧技术解构《我跑江湖那些年》:从“仇恨驱动型算法”到“多方安全计算的自我救赎”
短剧萌
算法安全
《我跑江湖那些年》以慕青青的复仇与蜕变为主线,展现了分布式系统中的信任崩塌与对抗性博弈的模型优化。本文将从机器学习视角拆解这场“江湖算法”的技术隐喻,探讨如何在数据污染的困境中实现参数净化。1.初始训练集:暴力采样与特征空间坍缩慕青青(Agent_M)的成长环境可视为一个高偏差训练集:数据污染事件:村主任(Node_V)通过恶意共识算法(如嫉妒驱动的PoW机制),煽动村民(Sub_Nodes)对果
- 金融风控可解释性算法安全优化实践
智能计算研究中心
其他
内容概要在金融风险控制领域,算法的可解释性与安全性已成为技术落地的核心挑战。本文从实际业务场景出发,系统性梳理可解释性算法与联邦学习、特征工程的协同框架,通过超参数优化与动态模型评估机制,构建透明化决策链路。在技术实现层面,重点解析支持向量机与随机森林的改进方案,结合数据清洗与标注的标准化流程,强化风险预测模型在准确率、F1值等关键指标的表现,同时兼顾合规性与安全边界的设计要求。提示:金融机构在部
- 生成对抗网络优化医疗影像分析方法
智能计算研究中心
其他
内容概要生成对抗网络(GAN)在医疗影像分析中的应用正经历从理论验证到临床落地的关键转型。本研究通过整合联邦学习算法与动态数据增强技术,构建了跨机构医疗影像协同分析框架,在保证患者隐私的前提下实现了数据资源的有效扩展。值得注意的是,算法优化过程中采用的三阶段特征工程策略——包括基于注意力机制的特征选择、多尺度特征融合以及可解释性特征映射——使模型决策透明度提升约37.6%。临床实践表明,将联邦学习
- 跨领域算法安全优化与可解释实践
智能计算研究中心
其他
内容概要作为系统性研究框架,《跨领域算法安全优化与可解释实践》从算法研发的全生命周期切入,重点解决多领域交叉应用中的核心矛盾。通过整合联邦学习的分布式架构与量子计算的高效特性,构建兼顾隐私保护与运算效率的算法优化范式,同时引入动态可解释性分析技术,为医疗影像诊断、金融风险预测等高敏感场景提供决策透明度保障。在技术路径层面,研究聚焦特征工程的鲁棒性设计、超参数的自适应调优策略,以及生成对抗网络在数据
- 智能算法安全与跨领域创新实践
智能计算研究中心
其他
内容概要在智能算法快速渗透各行业的背景下,安全治理与技术创新已成为驱动跨领域应用的核心议题。当前研究重点围绕算法可解释性增强、动态风险评估及数据安全防护展开,通过融合联邦学习的分布式协作框架、量子计算的算力突破以及注意力机制的特征聚焦能力,构建起多模态技术融合的创新路径。在应用场景层面,医疗影像诊断、金融风险预测与自动驾驶系统等关键领域已形成算法效能与安全性的双重验证体系,其中超参数优化、特征工程
- 模型优化前沿趋势与行业应用实战
智能计算研究中心
其他
内容概要模型优化技术正经历从理论研究到产业落地的关键跃迁。随着自动化机器学习(AutoML)与边缘计算技术的深度融合,模型开发范式正从人工调参转向自动化、自适应优化。以联邦学习为代表的数据隐私保护技术,正在重构跨机构协作的模型训练范式,而量子计算与神经架构搜索(NAS)的结合,为超参数优化开辟了新维度。在应用层面,医疗影像识别准确率突破99%的突破性成果,验证了迁移学习在跨领域知识迁移中的巨大潜力
- python | flower,一个强大的 Python 库!
双木的木
python拓展学习python库python开发语言计算机视觉人工智能算法联邦学习深度学习
本文来源公众号“python”,仅用于学术分享,侵权删,干货满满。原文链接:flower,一个强大的Python库!大家好,今天为大家分享一个强大的Python库-flower。Github地址:https://github.com/mher/flower随着机器学习模型应用的增长,联邦学习(FederatedLearning,FL)逐渐成为一个重要方向。联邦学习允许多个客户端在不共享原始数据的情
- 智能算法安全优化与关键技术实践
智能计算研究中心
其他
内容概要智能算法的安全优化与关键技术实践已成为人工智能发展的核心命题。在医疗影像分析、金融风控、自动驾驶等场景中,联邦学习的分布式协作机制有效解决了数据孤岛问题,而生成对抗网络通过对抗训练增强数据生成能力,为小样本场景提供技术支撑。与此同时,可解释性算法通过特征重要性分析与决策路径可视化,显著提升模型透明度,降低黑箱风险。在技术实现层面,特征工程的自动化筛选与超参数动态调整策略优化了模型性能,结合
- 跨领域算法安全优化与实践路径
智能计算研究中心
其他
内容概要在算法技术加速渗透金融、医疗、自动驾驶等关键领域的背景下,跨领域算法的安全性与可落地性成为核心挑战。本书从联邦学习的隐私保护架构切入,探讨如何通过可解释性算法增强模型透明度,并引入量子计算与边缘计算的协同优化框架,构建兼顾效率与安全的技术范式。值得注意的是,医疗影像分析中的对抗攻击防御机制与生成对抗网络驱动的推荐系统创新,揭示了算法动态演进中的风险控制逻辑。技术整合不应局限于单一场景优化,
- 第37篇Personalized Federated Learning: A Meta-Learning Approach(perfedavg联邦学习+元学习)2020个性化联邦学习使用Hessian
还不秃顶的计科生
联邦学习学习
第一部分:解决的问题联邦学习(FL)在多用户协同训练模型时,因数据隐私和通信限制,用户仅与中央服务器交互。传统FL方法得到的全局模型无法适应各用户的异质数据,导致在用户本地数据集上性能不佳因此这篇论文旨在解决联邦学习中模型缺乏个性化的问题第二部分:idea基于模型无关元学习(MAML)框架,提出个性化联邦学习问题的新公式。通过寻找一个初始共享模型,让用户基于自身数据执行少量梯度下降步骤就能快速适应
- AI人工智能 Agent:在保护隐私和数据安全中的应用
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能Agent:在保护隐私和数据安全中的应用关键词:AIAgent、隐私保护、数据安全、同态加密、联邦学习、区块链1.背景介绍1.1问题的由来随着人工智能技术的快速发展,AIAgent在各行各业得到了广泛应用。然而,在享受AI带来便利的同时,人们也越来越关注个人隐私和数据安全问题。传统的数据收集和处理方式存在隐私泄露风险,亟需探索如何在AI时代更好地保护用户隐私。1.2研究现状目前,学术界
- 基于同态加密的隐私计算技术在基因序列演化分析场景的应用
AI研究员
隐私计算同态加密bigdata人工智能算法
一、概述数据要素的流通共享和核心价值挖掘是数据要素市场培育的核心内容、必须在保证隐私安全的前提下实现有效信息共享。然而,当前仍然有三大隐私制约数据流通与协作。一是“数据孤岛”现象普遍存在,“数据孤岛”的出现使数据共享和流通协作受到阻碍,导致数据要素在资产化过程中发生垄断;二是全球数据合规监管日趋严格,日前各个国家都才采取数据安全法,确立了数据安全保护的各项基本制度,导致企事业及个人对数据流通与协作
- 人工智能算法安全优化实践路径
智能计算研究中心
其他
内容概要在人工智能技术深度融入产业实践的进程中,算法安全优化已成为保障系统可靠性与社会信任的核心命题。本文系统性梳理从数据预处理到模型落地的全流程安全实践路径,聚焦金融风控、医疗影像诊断、自动驾驶等关键场景,揭示算法开发中潜藏的伦理风险与技术挑战。通过整合自动化机器学习与联邦学习技术,构建跨数据孤岛的协作框架,同时引入可解释性算法增强模型透明度,确保决策逻辑可追溯、可验证。在模型优化维度,重点解析
- 金融风控与医疗影像算法创新前沿
智能计算研究中心
其他
内容概要在金融风控与医疗影像交叉领域,算法创新正推动两大行业的技术范式变革。联邦学习算法通过分布式数据协作机制,在保证隐私安全的前提下,显著提升金融风险预测模型的泛化能力。医疗影像诊断领域则依托三维卷积神经网络(3D-CNN)架构,实现了对CT、MRI等多模态影像的精准病灶分割,诊断准确率较传统方法提升23.6%。值得关注的是,可解释性算法(如LIME和SHAP)的深度应用,使两类场景中的模型决策
- 联邦学习与边缘模型优化赋能医疗诊断新路径
智能计算研究中心
其他
内容概要在医疗诊断智能化进程中,数据隐私保护与模型效能提升的双重需求催生出技术创新范式。联邦学习框架通过分布式模型训练机制,有效破解医疗机构间的数据壁垒,使跨机构的医学影像、病理数据在不离开本地服务器的前提下完成知识共享。与此同时,边缘计算节点部署将模型推理能力延伸至诊疗终端,CT影像实时分析响应时间缩短62%,显著提升急诊场景下的决策效率。建议医疗机构在部署联邦学习系统时,优先采用差分隐私与同态
- 联邦学习优化驱动医疗诊断新突破
智能计算研究中心
其他
内容概要医疗人工智能的发展长期面临数据孤岛与隐私合规的双重挑战,传统集中式训练模式难以满足多机构协作需求。联邦学习技术通过构建分布式训练框架,使医疗机构在不共享原始数据的前提下,实现跨域模型的协同优化。这一技术突破为医学影像识别、病理特征分析等场景提供了新的技术路径,特别是在肿瘤筛查领域,通过迁移学习实现跨病种知识迁移,配合超参数自动调优机制,可使模型在有限标注数据下达到95%以上的病灶识别准确率
- 2025保险与金融领域实战全解析:DeepSeek赋能细分领域深度指南(附全流程案例)
emmm形成中
deepseek细分领域应用人工智能金融人工智能python数据挖掘数据分析
2025保险与金融领域实战全解析:DeepSeek赋能细分领域深度指南(附全流程案例)目录DeepSeek在保险与金融中的核心价值保险领域:从风险建模到产品创新金融领域:从投资分析到财富管理区块链与联邦学习的应用探索客户关系与私域运营:全球化体验升级工具与资源推荐:从入门到精通未来趋势与挑战一、DeepSeek在保险与金融中的核心价值1.1DeepSeek的核心功能智能风险建模:通过大数据分析,精
- (10054, ‘远程主机强迫关闭了一个现有的连接。‘, None, 10054, None)(联邦学习+ray中常见问题)
还不秃顶的计科生
快捷操作编程技巧服务器前端运维
第一部分:问题描述(pid=24828)Filesalreadydownloadedandverified2025-02-2412:48:44,183ERRORimport_thread.py:89--ImportThread:Errorwhilereadingfromsocket:(10054,'远程主机强迫关闭了一个现有的连接。',None,10054,None)2025-02-2412:48
- 边缘计算与联邦学习驱动医疗影像特征工程优化
智能计算研究中心
其他
内容概要随着医疗影像数据规模的指数级增长与多模态成像技术的普及,传统集中式特征工程方法面临数据孤岛、隐私泄露及计算效率等多重挑战。本研究针对医疗影像分析场景中跨机构数据共享的复杂性,提出基于边缘计算与联邦学习的协同优化框架,通过分布式特征工程重构医学图像的解析范式。该框架以卷积神经网络为核心,结合多阶段数据预处理流程(包括噪声抑制、模态对齐及标准化处理),实现跨设备医疗影像的特征表示统一化。在模型
- 深度学习框架与边缘计算融合驱动医疗金融模型优化新路径
智能计算研究中心
其他
内容概要随着边缘计算与深度学习框架的深度融合,医疗与金融领域的模型优化正在突破传统算力与隐私保护的瓶颈。当前,TensorFlow、PyTorch等主流框架通过轻量化改造(如TensorFlowLite与PyTorchMobile)逐步适应边缘设备的资源限制,同时结合联邦学习技术构建分布式训练网络。这种技术协同不仅降低了医疗影像诊断中的数据传输延迟,还通过动态模型压缩策略(如量化与剪枝)将金融预测
- 边缘计算与联邦学习驱动医疗金融预测及模型可解释性技术突破
智能计算研究中心
其他
内容概要当前人工智能技术正经历多维度融合与迭代升级,边缘计算与联邦学习的协同创新成为突破性方向。通过将计算资源下沉至终端设备,边缘计算有效缓解了传统中心化架构的延迟与带宽压力,而联邦学习则在保障数据隐私的前提下,实现了跨机构模型的分布式训练。这种技术组合在医疗诊断与金融预测领域展现出显著优势,例如通过部署轻量化模型实现实时病理分析,或构建跨银行风险预测系统,同时满足监管合规需求。在模型优化层面,自
- 联邦学习: 统一数据协作和隐私保护的技术解决之道
小牍
大数据分布式数据安全
联邦学习:统一数据协作和隐私保护的技术解决之道1.数据价值和隐私2.隐私计算技术安全多方计算可信执行环境联邦学习3.联邦学习的拓展分布式机器学习联邦学习和传统分布式系统的差异联邦学习带来的挑战安全性补充实际案例讲解总结1.数据价值和隐私为什么需要隐私计算呢?数据的产生过程是分散的,数据具有天然的割裂性。不同类型的公司提供不同的业务和服务,产生的数据类型也是不同的,例如社交公司产生用户大量的社交数据
- 第26篇:pFedLoRA: Model-Heterogeneous Personalized Federated Learning with LoRA使用lora微调的模型异构个性化联邦学习
还不秃顶的计科生
联邦学习深度学习人工智能开发语言
第一部分:解决的问题联邦学习(FederatedLearning,FL)是一种分布式机器学习方法,允许客户端在本地数据上训练模型,同时通过中心服务器共享学习成果。传统FL框架假设客户端使用相同的模型结构(模型同构),但在实际中可能面对:统计异质性:客户端的数据分布不均(non-IID)。资源异质性:客户端硬件资源有限。模型异质性:客户端可能拥有不同的模型结构。模型异构的个性化联邦学习(MHPFL)
- 2024年Python最新联邦学习实战-2-用FATE从零实现横向逻辑回归,面试阿里巴巴客服
2401_84138785
程序员python逻辑回归面试
学好Python不论是就业还是做副业赚钱都不错,但要学会Python还是要有一个学习规划。最后大家分享一份全套的Python学习资料,给那些想学习Python的小伙伴们一点帮助!一、Python所有方向的学习路线Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。二、学习软件工欲善其
- 聚焦大模型!隐语技术团队研究成果被 ICASSP 与 ICLR 两大顶会收录
隐私开源模型
“隐语”是开源的可信隐私计算框架,内置MPC、TEE、同态等多种密态计算虚拟设备供灵活选择,提供丰富的联邦学习算法和差分隐私机制。开源项目:https://github.com/secretflowhttps://gitee.com/secretflow导语:2023年,「大模型」走到了聚光灯下,技术圈的“头部玩家”们纷纷入场,其潜能和价值正在被不断挖掘与释放。与此同时,大模型相关的隐私安全问题也
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持