手把手教物体检测——M2Det

目录

模型介绍

模型使用

下载源码:

在data文件夹下新建VOCdevkit文件夹,导入VOC格式的数据集。如下图:

下载权重文件,放在weights(如果没有就在根目录新建)文件夹下面。

修改voc0712.py里面的类别。

选择配置文件。

删除pycocotools

修改nms_wrapper.py

修改train.py

修改test.py

可视化结果

 


模型介绍

物体检测模型M2Det,是北京大学&阿里达摩院提出的Single-shot目标检测新模型,使用multi-level特征。在MS-COCO benchmark上,M2Det的单尺度版本和多尺度版本AP分别达到41.044.2 

该模型的特点:

  • 提出多级特征金字塔网络MLFPN。MLFPN的结构如下:

手把手教物体检测——M2Det_第1张图片

  • 基于提出的MLFPN,结合SSD,提出一种新的Single-shot目标检测模型M2Det

模型使用

  • 下载源码:

https://github.com/qijiezhao/M2Det”。

  • 在data文件夹下新建VOCdevkit文件夹,导入VOC格式的数据集。如下图:

手把手教物体检测——M2Det_第2张图片

  • 下载权重文件,放在weights(如果没有就在根目录新建)文件夹下面。

手把手教物体检测——M2Det_第3张图片

  • 修改voc0712.py里面的类别。

将:

VOC_CLASSES = ( '__background__', # always index 0

    'aeroplane', 'bicycle', 'bird', 'boat',

    'bottle', 'bus', 'car', 'cat', 'chair',

    'cow', 'diningtable', 'dog', 'horse',

    'motorbike', 'person', 'pottedplant',

    'sheep', 'sofa', 'train', 'tvmonitor')

修改为:

VOC_CLASSES = ( '__background__', # always index 0
   
'aircraft', 'oiltank')

选择配置文件。

本例采用configs->m2det512_vgg.py配置文件

model = dict(
   
type = 'm2det',
   
input_size = 512,
   
init_net = True,
   
pretrained = 'weights/vgg16_reducedfc.pth',
   
m2det_config = dict(
       
backbone = 'vgg16',
       
net_family = 'vgg', # vgg includes ['vgg16','vgg19'], res includes ['resnetxxx','resnextxxx']
       
base_out = [22,34], # [22,34] for vgg, [2,4] or [3,4] for res families
       
planes = 256,
       
num_levels = 8,
       
num_scales = 6,
       
sfam = False,
       
smooth = True,
       
num_classes = 3,#更改类别,按照数据集里面的类别数量+1(背景)
        ),
   
rgb_means = (104, 117, 123),
   
p = 0.6,
   
anchor_config = dict(
       
step_pattern = [8, 16, 32, 64, 128, 256],
       
size_pattern = [0.06, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05],
        ),
   
save_eposhs = 10,
   
weights_save = 'weights/' #保存权重文件的目录
    )
train_cfg = dict(
   
cuda = True,#是否使用cuda
   
warmup = 5,
   
per_batch_size = 2,#修改batchsize,按照自己显卡的能力修改
    lr = [0.004, 0.002, 0.0004, 0.00004, 0.000004],#学利率调整,调整依据step_lrepoch数值。
    gamma = 0.1,
   
end_lr = 1e-6,
   
step_lr = dict(
       
COCO = [90, 110, 130, 150, 160],
       
VOC = [100, 150, 200, 250, 300], # unsolve
       
),
   
print_epochs = 10,#每个10epoch保存一个模型。
    num_workers= 2,#线程数,根据CPU调整
    )

test_cfg = dict(
   
cuda = True,
   
topk = 0,
   
iou = 0.45,
   
soft_nms = True,
   
score_threshold = 0.1,
   
keep_per_class = 50,
   
save_folder = 'eval'
   
)

loss = dict(overlap_thresh = 0.5,
           
prior_for_matching = True,
           
bkg_label = 0,
           
neg_mining = True,
           
neg_pos = 3,
           
neg_overlap = 0.5,
           
encode_target = False)

optimizer = dict(type='SGD', momentum=0.9, weight_decay=0.0005)#激活函数。

#修改dataset,本例采用VOC2007数据集,将COCO的删除即可,删除VOC2012

dataset = dict(

    VOC = dict(

        train_sets = [('2007', 'trainval')],

        eval_sets = [('2007', 'test')],

        )

      )

import os

import os

home = ""#home路径,默认是linux的,本例采用win10,讲其修改为“”

VOCroot = os.path.join(home,"data/VOCdevkit/")

COCOroot = os.path.join(home,"data/coco/")
  • 删除pycocotools

在安装pycocotools工具前提下,将程序自带的pycocotools工具包删除。

手把手教物体检测——M2Det_第4张图片

修改coco.py

将:

from utils.pycocotools.coco import COCO
from utils.pycocotools.cocoeval import COCOeval
from utils.pycocotools import mask as COCOmask

修改为:

from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from pycocotools import mask as COCOmask

  • 修改nms_wrapper.py

将:

from .nms.cpu_nms import cpu_nms, cpu_soft_nms
from .nms.gpu_nms import gpu_nms
# def nms(dets, thresh, force_cpu=False):
#     """Dispatch to either CPU or GPU NMS implementations."""
#     if dets.shape[0] == 0:
#         return []
#     if cfg.USE_GPU_NMS and not force_cpu:
#         return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)
#     else:
#         return cpu_nms(dets, thresh)

def nms(dets, thresh, force_cpu=False):
   
"""Dispatch to either CPU or GPU NMS implementations."""
   
if dets.shape[0] == 0:
        return
[]
   
if force_cpu:
        return
cpu_soft_nms(dets, thresh, method = 1)
       
#return cpu_nms(dets, thresh)
   
return gpu_nms(dets, thresh)

修改为:

from .nms.py_cpu_nms import py_cpu_nms

def nms(dets, thresh, force_cpu=False):
   
"""Dispatch to either CPU or GPU NMS implementations."""
   
if dets.shape[0] == 0:
        return
[]
   
if force_cpu:
        return
py_cpu_nms(dets, thresh, method = 1)
   
return py_cpu_nms(dets, thresh)

  • 修改train.py

修改选定配置的文件

parser.add_argument('-c', '--config', default='configs/m2det512_vgg.py')

修改数据的格式
parser.add_argument('-d', '--dataset', default='VOC', help='VOC or COCO dataset')

然后就可以开始训练了。
  • 修改test.py

parser = argparse.ArgumentParser(description='M2Det Testing')
parser.add_argument('-c', '--config', default='configs/m2det512_vgg.py', type=str)#选择配置文件,和训练的配置文件对应
parser.add_argument('-d', '--dataset', default='VOC', help='VOC or COCO version')
parser.add_argument('-m', '--trained_model', default='weights/M2Det_VOC_size512_netvgg16_epoch30.pth', type=str, help='Trained state_dict file path to open')
parser.add_argument('--test', action='store_true', help='to submit a test file')

修改voc0712.py282行的xml路径。将:

annopath = os.path.join(
                       
rootpath,
                       
'Annotations',
                       
'{:s}.xml')

改为:

annopath = rootpath+'/Annotations/{:s}.xml'

测试结果:

手把手教物体检测——M2Det_第5张图片

  • 可视化结果

修改demo.py中超参数

parser.add_argument('-c', '--config', default='configs/m2det512_vgg.py', type=str)
parser.add_argument('-f', '--directory', default='imgs/', help='the path to demo images')
parser.add_argument('-m', '--trained_model', default='weights/M2Det_VOC_size512_netvgg16_epoch30.pth', type=str, help='Trained state_dict file path to open')

然后将部分测试图片放到imgs文件夹下面,运行demo.py.

手把手教物体检测——M2Det_第6张图片

手把手教物体检测——M2Det_第7张图片

你可能感兴趣的:(人工智能,深度学习,pytorch,神经网络)