1. 实验环境配置-mykernel 2.0(参考https://github.com/mengning/mykernel )
(1)虚拟机环境:VMware® Workstation 14 Pro + Ubuntu16.04.4 LTS
(2)打开终端,可以创建一个新目录来进行本次实验环境的搭建,按照下面的步骤配置实验环境
wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch sudo apt install axel axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz xz -d linux-5.4.34.tar.xz tar -xvf linux-5.4.34.tar cd linux-5.4.34 patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev make defconfig 10 make -j$(nproc) sudo apt install qemu 12 qemu-system-x86_64 -kernel arch/x86/boot/bzImage
环境搭建好后,输入 qemu-system-x86_64 -kernel arch/x86/boot/bzImage 命令,从qemu窗口中可以看到my_start_kernel在执行,同时my_timer_handler时钟中断处理程序周期性执行
2. 编写一个操作系统内核(参照-https://github.com/mengning/mykernel )
(1)在linux-5.4.34下有一个mykernel目录,进入该目录,其中mymain.c 是内核运行的程序。当前有一个虚拟的CPU执行C代码的上下文环境,mymain.c中的代码在不停地执行。同时有一个中断处理程序的上下文环境,周期性地产生的时钟中断信号,能够触发myinterrupt.c中的代码。
接下来需要做的是,在mymain.c的基础上完成PCB和进程管理的代码,在myinterrupt.c的基础上完成进程切换代码,就可以完成一个可运行的OS kernel。
(2)首先在mykernel目录下增加一个mypcb.h 头文件,用来定义进程控制块(Process Control Block),也就是进程结构体的定义。
/* * linux/mykernel/mypcb.h */ //最大的任务数 #define MAX_TASK_NUM 4 #define KERNEL_STACK_SIZE 1024*8 /* CPU-specific state of this task */ struct Thread { unsigned long ip; unsigned long sp; }; //Thread 结构体,用于存储当前进程中正在执行的线程的ip和sp typedef struct PCB{ int pid; /* 进程号 */ volatile long state; /* 进程状态,-1表示就绪态,0表示运行态,大于0表示阻塞态*/ char stack[KERNEL_STACK_SIZE]; //进程使用的堆栈 /* CPU-specific state of this task */ struct Thread thread; //当前正在执行的线程信息 unsigned long task_entry; //进程入口函数 struct PCB *next; }tPCB; //调度函数 void my_schedule(void);
3)对mymain.c中的my_start_kernel函数进行修改,并在mymain.c中实现了my_process函数,用来作为进程的代码模拟一个个进程,时间片轮转调度。
#include "mypcb.h" tPCB task[MAX_TASK_NUM]; //进程队列 tPCB * my_current_task = NULL; //当前进程 volatile int my_need_sched = 0;//进程调度标志 void my_process(void); void __init my_start_kernel(void) { int pid = 0; int i; /* 初始化0号进程 */ task[pid].pid = pid; task[pid].state = 0;/* 0号进程运行 */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*创建更多进程*/ for(i=1;i) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; task[i].state = 0; task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1]; task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid]; asm volatile(
"movq %1,%%rsp\n\t" /* 将当前进程的栈顶指针sp值赋值给rsp寄存器中*/ "pushq %1\n\t" /* push rbp */ "pushq %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to rip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); } void my_process(void) { int i = 0; while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }
(4)对myinterrupt.c的修改,my_timer_handler用来记录时间片,时间片消耗完之后完成调度。并在该文件中完成,my_schedule(void)函数的实现
#include "mypcb.h" extern tPCB task[MAX_TASK_NUM]; extern tPCB * my_current_task; extern volatile int my_need_sched; volatile int time_count = 0; /* * Called by timer interrupt. */ void my_timer_handler(void) //时间片处理函数 { if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); my_need_sched = 1; } time_count ++ ; return; } void my_schedule(void) { tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<<\n"); /* schedule */ next = my_current_task->next; prev = my_current_task; if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to next process */ asm volatile( "pushq %%rbp\n\t" /* save rbp of prev */ "movq %%rsp,%0\n\t" /* save rsp of prev */ "movq %2,%%rsp\n\t" /* restore rsp of next */ "movq $1f,%1\n\t" /* save rip of prev */ "pushq %3\n\t" "ret\n\t" /* restore rip of next */ "1:\t" /* next process start here */ "popq %%rbp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
(5)重新编译(linux 目录下make命令),再次运行,查看运行结果,可以看见进程的切换
3. 简要分析操作系统内核核心功能及运行工作机制
系统工作机制简要分析:
系统启动后,mymain.c中的my_start_kernel函数运行,里面是一个while(1) 循环,永远执行下去。
然后是myinterrupt.c,里面的my_timer_handler 函数会被内核周期性的调用,每调用1000次,就去将全局变量my_need_sched的值修改为1,my_start_kernel中的while循环发现my_need_sched值变为1后,就进行进程的调度,完成进程的切换,如此往复。
进程切换核心代码分析:
asm volatile( "pushq %%rbp\n\t" /* 1 save rbp of prev */ "movq %%rsp,%0\n\t" /* 2 save rsp of prev */ "movq %2,%%rsp\n\t" /* 3 restore rsp of next */ "movq $1f,%1\n\t" /* 4 save rip of prev */ "pushq %3\n\t" /* 5 save rip of next */ "ret\n\t" /* 6 restore rip of next */ "1:\t" /* 7 next process start here */ "popq %%rbp\n\t" /* 8 restore rbp of next */ : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); }
step1:将前一个进程的rbp压入栈
step2:保存前一个进程的rsp
step3:将下一个进程的堆栈栈顶放入rsp
step4:保存prev进程的rip寄存器值(在$1f处)到prev->thread.ip,这里$1f是指标号1。
step5:将下一个进程的指令入栈保存
step6:从栈中得到下一个进程的指令放进rip中
step7,8 将rbp寄存器的值修改为下一个进程的栈底