import time
import torch
import torch.nn as nn
import math
from collections import OrderedDict
# from nets.coordConv import CoordConv
class BasicBlock(nn.Module):
def __init__(self, inplanes, planes,dim):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes[0], kernel_size=1,stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(planes[0])
self.relu1 = nn.LeakyReLU(0.1)
self.conv2 = nn.Conv2d(planes[0], planes[1], kernel_size=3,stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes[1])
self.relu2 = nn.LeakyReLU(0.1)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu2(out)
out += residual
return out
class DarkNet(nn.Module):
def __init__(self, layers):
super(DarkNet, self).__init__()
self.inplanes = 32
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.inplanes)
self.relu1 = nn.LeakyReLU(0.1)
self.layer1 = self._make_layer([32, 64], layers[0],0)
self.layer2 = self._make_layer([64, 128], layers[1],1)
self.layer3 = self._make_layer([128, 256], layers[2],2)
self.layer4 = self._make_layer([256, 512], layers[3],3)
self.layer5 = self._make_layer([512, 1024], layers[4],4)
self.layers_out_filters = [64, 128, 256, 512, 1024]
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
# if isinstance(m, CoordConv):
# n = m.conv.kernel_size[0] * m.conv.kernel_size[1] * m.conv.out_channels
# m.conv.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, planes, blocks,layer_num):
layers = []
dim=208
if layer_num==0:
dim=416
elif layer_num==1:
dim=208
elif layer_num == 2:
dim = 104
elif layer_num == 3:
dim = 52
elif layer_num == 4:
dim = 26
# downsample
layers.append(("ds_conv", nn.Conv2d(self.inplanes, planes[1], kernel_size=3,stride=2, padding=1, bias=False)))
# layers.append(("ds_conv",CoordConv(dim,self.inplanes, planes[1], kernel_size=3,stride=2, padding=1, bias=False)))
layers.append(("ds_bn", nn.BatchNorm2d(planes[1])))
layers.append(("ds_relu", nn.LeakyReLU(0.1)))
# blocks
self.inplanes = planes[1]
for i in range(0, blocks):
layers.append(("residual_{}".format(i), BasicBlock(self.inplanes, planes,dim//2)))
return nn.Sequential(OrderedDict(layers))
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.layer1(x)
x = self.layer2(x)
out3 = self.layer3(x)
out4 = self.layer4(out3)
out5 = self.layer5(out4)
return out3, out4, out5
def darknet21(pretrained, **kwargs):
"""Constructs a darknet-21 model.
"""
model = DarkNet([1, 1, 2, 2, 1])
if pretrained:
if isinstance(pretrained, str):
model.load_state_dict(torch.load(pretrained))
else:
raise Exception("darknet request a pretrained path. got [{}]".format(pretrained))
return model
def darknet53(pretrained, **kwargs):
"""Constructs a darknet-53 model.
"""
model = DarkNet([1, 2, 8, 8, 4])
if pretrained:
if isinstance(pretrained, str):
model.load_state_dict(torch.load(pretrained))
else:
raise Exception("darknet request a pretrained path. got [{}]".format(pretrained))
return model
if __name__ == '__main__':
model = DarkNet([1, 2, 8, 8, 4])
model.eval()
for i in range(2):
t1 = time.time()
x = torch.rand(1, 3, 352, 352)
out3 = model(x)
for out in out3:
print(out.shape)
cnt = time.time() - t1
print(cnt)
结果:
torch.Size([1, 256, 44, 44])
torch.Size([1, 512, 22, 22])
torch.Size([1, 1024, 11, 11])
0.6449689865112305