【LeetCode & 剑指offer刷题】动态规划与贪婪法题16:背包问题总结

【LeetCode & 剑指offer刷题】动态规划与贪婪法题16:背包问题总结

【LeetCode & 剑指offer 刷题笔记】目录(持续更新中...)

背包问题总结

背包问题
 
背包问题 (Knapsack problem x ) 有很多种版本,常见的是以下三种:
  • 0-1 背包问题 (0-1 knapsack problem):每种物品只有一个
  • 完全背包问题 (UKP, unbounded knapsack problem):每种物品都有无限个可用
  • 多重背包问题 (BKP, bounded knapsack problem):第 i 种物品有 n[i] 个可用
 
0-1 背包问题
0-1背包中一种物体只有一个,放入数量为0或者1
定义状态 dp[i][j],表示“ 把前 i 种物品装进重量限制为 j 的背包可以获得的最大价值
v[i]表示物品i的价值,w[i]表示物品i的重量,j为背包的重量限制
0/1背包问题状态转移方程便是:
   dp[i][j] = max{dp[i − 1][j],  dp[i − 1] [j − w[i]] + v[i]}
    两项分别代表物品i不选择或者选择的情况 (减去的代表选择的)
时间复杂度是O(nb),空间也是O(nb),假设有n种物品,重量限制为b
 
 
可以简化为:
   d[j]=max{d[j],d[j-w[i]]+v[i]};
注意:遍历j时务必从右到左,因为d[j]只依赖于上一阶段的结果,从右到左避免覆盖上阶段有用结果
 
 
完全背包问题
完全背包中一种物体可以有多个,可以放满背包为止
完全背包问题状态转移方程是:
   dp[i][j] = max{dp[i − 1][j],  dp[i] [j − w[i]] + v[i]}
两项分别代表物品i不选择或者选择,由于对物品i没有限制,故后一项为dp[i]而非上面的dp[i-1]
 
或用以下递推式(上面的效率要高一点):
dp[i][j] = max( dp[i-1][j-k*w[i]] + k*v[i] ),   k为选择物品的个数, k=0,1,2...j/w[i] (0 ≤ k ∗ w[i] ≤ j)
基于前i-1个物品,在选择不同个数的物品i的方案中选择最大的那个
(和问题 coin change 比较相似)
 
可以简化为:
   d[j] = max{d[j], d[j-k*w[i]] + k*v[i]}
注意:遍历j时务必从右到左,原因同上
 
多重背包问题
多重背包中一种物体可以有多个,个数有人为限定(也不能超过背包容量)
多重背包问题状态转移方程是:
dp[i][j] = max( dp[i−1][j−k∗w[i]] + k∗v[i] )    0 ≤ k ≤ n[i],0 ≤ k ∗ w[i] ≤ j
n[i]为物品i限制的个数
基于前i-1个物品,在选择不同个数的物品i的方案中选择最大的那个
 
可以简化为:
   d[j] = max{d[j], d[j-k*w[i]] + k*v[i]}
注意:遍历j时务必从右到左,原因同上
 
参考:
【动态规划】背包问题(一) 01背包 完全背包 多重背包 - A.S.KirigiriKyouko - 博客园
背包问题总结
 

 

posted @ 2019-01-06 16:56 wikiwen 阅读( ...) 评论( ...) 编辑 收藏

你可能感兴趣的:(【LeetCode & 剑指offer刷题】动态规划与贪婪法题16:背包问题总结)