mmdetection入门介绍-模型解析

五、模型解析

我们可以参考一下docs/technical_details.md里面的参考

模型回顾
按照典型的约定,我们使用Dataset和DataLoader来加载具有多个工作程序的数据。Dataset返回数据项的字典,对应于模型的forward方法的参数。
由于对象检测中的数据大小可能不同(图像大小,gt bbox大小等),
在mmcv中引入了一种新的DataContainer类型,以帮助收集和分发不同大小的数据。

在mmdetection中,模型组件基本上分为4种类型。

  • backbone:通常是FCN网络,用于提取功能图,例如ResNet。
  • neck:骨干和头部之间的部分,例如FPN,ASPP。
  • head:用于特定任务的部分,例如bbox预测和mask预测。
  • roi extractor:用于从 feature maps中提取feature的部分,例如RoI Align。

官方使用上述组件编写了一些通用的检测管道,例如“SingleStageDetector”和“ TwoStageDetector”。其中我们通过这两个内容来阅读一下框架,其中SingleStageDetector和TwoStageDetector均位于mmdet/models/detectors目录下的single_stage.py和two_stage.py.

5.1 单阶段检测

可以看一下单阶段检测的源码

@DETECTORS.register_module
class SingleStageDetector(BaseDetector):
    """Base class for single-stage detectors.

    Single-stage detectors directly and densely predict bounding boxes on the
    output features of the backbone+neck.
    """

    def __init__(self,
                 backbone,
                 neck=None,
                 bbox_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        super(SingleStageDetector, self).__init__()
        self.backbone = builder.build_backbone(backbone)
        if neck is not None:
            self.neck = builder.build_neck(neck)
        self.bbox_head = builder.build_head(bbox_head)
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.init_weights(pretrained=pretrained)

    def init_weights(self, pretrained=None):
        super(SingleStageDetector, self).init_weights(pretrained)
        self.backbone.init_weights(pretrained=pretrained)
        if self.with_neck:
            if isinstance(self.neck, nn.Sequential):
                for m in self.neck:
                    m.init_weights()
            else:
                self.neck.init_weights()
        self.bbox_head.init_weights()

    def extract_feat(self, img):
        """Directly extract features from the backbone+neck
        """
        x = self.backbone(img)
        if self.with_neck:
            x = self.neck(x)
        return x

    def forward_dummy(self, img):
        """Used for computing network flops.

        See `mmedetection/tools/get_flops.py`
        """
        x = self.extract_feat(img)
        outs = self.bbox_head(x)
        return outs

    def forward_train(self,
                      img,
                      img_metas,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None):
        x = self.extract_feat(img)
        outs = self.bbox_head(x)
        loss_inputs = outs + (gt_bboxes, gt_labels, img_metas, self.train_cfg)
        losses = self.bbox_head.loss(
            *loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
        return losses

    def simple_test(self, img, img_meta, rescale=False):
        x = self.extract_feat(img)
        outs = self.bbox_head(x)
        bbox_inputs = outs + (img_meta, self.test_cfg, rescale)
        bbox_list = self.bbox_head.get_bboxes(*bbox_inputs)
        bbox_results = [
            bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes)
            for det_bboxes, det_labels in bbox_list
        ]
        return bbox_results[0]

    def aug_test(self, imgs, img_metas, rescale=False):
        raise NotImplementedError

从第一句话来看singlestageDetector传入参数为BaseDetector,也就是继承基础类来实现,然后就是初始化参数

    def __init__(self,
                 backbone,
                 neck=None,
                 bbox_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        super(SingleStageDetector, self).__init__()
        self.backbone = builder.build_backbone(backbone)
        if neck is not None:
            self.neck = builder.build_neck(neck)
        self.bbox_head = builder.build_head(bbox_head)
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.init_weights(pretrained=pretrained)

后面就是初始化权重,提取特征和用于计算网络触发

    def init_weights(self, pretrained=None):
        super(SingleStageDetector, self).init_weights(pretrained)
        self.backbone.init_weights(pretrained=pretrained)
        if self.with_neck:
            if isinstance(self.neck, nn.Sequential):
                for m in self.neck:
                    m.init_weights()
            else:
                self.neck.init_weights()
        self.bbox_head.init_weights()

    def extract_feat(self, img):
        """Directly extract features from the backbone+neck
        """
        x = self.backbone(img)
        if self.with_neck:
            x = self.neck(x)
        return x

    def forward_dummy(self, img):
        """Used for computing network flops.

        See `mmedetection/tools/get_flops.py`
        """
        x = self.extract_feat(img)
        outs = self.bbox_head(x)
        return outs

然后就是forward_train,返回的是训练的loss

    def forward_train(self,
                      img,
                      img_metas,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None):
        x = self.extract_feat(img)
        outs = self.bbox_head(x)
        loss_inputs = outs + (gt_bboxes, gt_labels, img_metas, self.train_cfg)
        losses = self.bbox_head.loss(
            *loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
        return losses

simple_test输出的是bbox预处的结果

    def simple_test(self, img, img_meta, rescale=False):
        x = self.extract_feat(img)
        outs = self.bbox_head(x)
        bbox_inputs = outs + (img_meta, self.test_cfg, rescale)
        bbox_list = self.bbox_head.get_bboxes(*bbox_inputs)
        bbox_results = [
            bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes)
            for det_bboxes, det_labels in bbox_list
        ]
        return bbox_results[0]

其中,从函数的结果可以看出来bbox_results输出的结果包含

  • det_bboxes 检测的边界框
  • det_labels 检测物体的类别

5.2 双阶段检测

还是先来看一下源码

@DETECTORS.register_module
class TwoStageDetector(BaseDetector, RPNTestMixin, BBoxTestMixin,
                       MaskTestMixin):
    """Base class for two-stage detectors.

    Two-stage detectors typically consisting of a region proposal network and a
    task-specific regression head.
    """

    def __init__(self,
                 backbone,
                 neck=None,
                 shared_head=None,
                 rpn_head=None,
                 bbox_roi_extractor=None,
                 bbox_head=None,
                 mask_roi_extractor=None,
                 mask_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        super(TwoStageDetector, self).__init__()
        self.backbone = builder.build_backbone(backbone)

        if neck is not None:
            self.neck = builder.build_neck(neck)
        if shared_head is not None:
            self.shared_head = builder.build_shared_head(shared_head)
        if rpn_head is not None:
            # RPN搭建后,有几张尺寸的特征图,执行几次其forward
            self.rpn_head = builder.build_head(rpn_head)
        if bbox_head is not None:
            self.bbox_roi_extractor = builder.build_roi_extractor(
                bbox_roi_extractor)
            self.bbox_head = builder.build_head(bbox_head)
        if mask_head is not None:
            if mask_roi_extractor is not None:
                self.mask_roi_extractor = builder.build_roi_extractor(
                    mask_roi_extractor)
                self.share_roi_extractor = False
            else:
                self.share_roi_extractor = True
                self.mask_roi_extractor = self.bbox_roi_extractor
            self.mask_head = builder.build_head(mask_head)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        # 在此处初始化模型。实际是逐模块调用,层层初始化
        self.init_weights(pretrained=pretrained)


    @property
    def with_rpn(self):
        return hasattr(self, 'rpn_head') and self.rpn_head is not None


    def init_weights(self, pretrained=None):
        super(TwoStageDetector, self).init_weights(pretrained)
        # 训练阶段只有backbone是预训练初始化
        self.backbone.init_weights(pretrained=pretrained)
        if self.with_neck:
            if isinstance(self.neck, nn.Sequential):
                for m in self.neck:
                    m.init_weights()
            else:
                self.neck.init_weights()
        if self.with_shared_head:
            self.shared_head.init_weights(pretrained=pretrained)
        if self.with_rpn:
            self.rpn_head.init_weights()
        if self.with_bbox:
            self.bbox_roi_extractor.init_weights()
            self.bbox_head.init_weights()
        if self.with_mask:
            self.mask_head.init_weights()
            if not self.share_roi_extractor:
                self.mask_roi_extractor.init_weights()
    # 特征图的提取层:backbone的输出+FPN的输出
    def extract_feat(self, img):
        """Directly extract features from the backbone+neck
        """
        x = self.backbone(img)# 经过backbone的前向计算
        if self.with_neck:
            x = self.neck(x) # neck FPN前向计算,得到输出特征图的tuple
        return x

    def forward_dummy(self, img):
        """Used for computing network flops.

        See `mmedetection/tools/get_flops.py`
        """
        outs = ()
        # backbone
        x = self.extract_feat(img)
        # rpn
        if self.with_rpn:
            rpn_outs = self.rpn_head(x)
            outs = outs + (rpn_outs, )
        proposals = torch.randn(1000, 4).cuda()
        # bbox head
        rois = bbox2roi([proposals])
        if self.with_bbox:
            bbox_feats = self.bbox_roi_extractor(
                x[:self.bbox_roi_extractor.num_inputs], rois)
            if self.with_shared_head:
                bbox_feats = self.shared_head(bbox_feats)
            cls_score, bbox_pred = self.bbox_head(bbox_feats)
            outs = outs + (cls_score, bbox_pred)
        # mask head
        if self.with_mask:
            mask_rois = rois[:100]
            mask_feats = self.mask_roi_extractor(
                x[:self.mask_roi_extractor.num_inputs], mask_rois)
            if self.with_shared_head:
                mask_feats = self.shared_head(mask_feats)
            mask_pred = self.mask_head(mask_feats)
            outs = outs + (mask_pred, )
        return outs

    # 训练过程的前向传播计算
    def forward_train(self,
                      img,
                      img_meta,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None,
                      gt_masks=None,
                      proposals=None):
        """
        Args:
            img (Tensor): of shape (N, C, H, W) encoding input images.
                Typically these should be mean centered and std scaled.

            img_meta (list[dict]): list of image info dict where each dict has:
                'img_shape', 'scale_factor', 'flip', and my also contain
                'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
                For details on the values of these keys see
                `mmdet/datasets/pipelines/formatting.py:Collect`.

            gt_bboxes (list[Tensor]): each item are the truth boxes for each
                image in [tl_x, tl_y, br_x, br_y] format.

            gt_labels (list[Tensor]): class indices corresponding to each box

            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.

            gt_masks (None | Tensor) : true segmentation masks for each box
                used if the architecture supports a segmentation task.

            proposals : override rpn proposals with custom proposals. Use when
                `with_rpn` is False.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        x = self.extract_feat(img)# 下面这一步计算了前向的backbone传播和FPN

        # 从RPN开始有loss了
        losses = dict()

        # RPN forward and loss
        if self.with_rpn:
            rpn_outs = self.rpn_head(x) # 计算RPN前向传播,隐式调用forward注意遵照MRO顺序搜索
            # tuple可以直接作加法,相当于元组合并
            rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta,
                                          self.train_cfg.rpn)
            rpn_losses = self.rpn_head.loss(
                *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)# 计算前向loss,注意rpn的loss调用方法
            losses.update(rpn_losses) # 字典的合并方法


            proposal_cfg = self.train_cfg.get('rpn_proposal',
                                              self.test_cfg.rpn)
            proposal_inputs = rpn_outs + (img_meta, proposal_cfg)  # 将RPN输出的box和相关设置信息输入proposal
            proposal_list = self.rpn_head.get_bboxes(*proposal_inputs) # 获得回归proposal
        else:
            proposal_list = proposals  # 直接指定proposals

        # assign gts and sample proposals
        if self.with_bbox or self.with_mask:
            bbox_assigner = build_assigner(self.train_cfg.rcnn.assigner)
            bbox_sampler = build_sampler(
                self.train_cfg.rcnn.sampler, context=self)
            num_imgs = img.size(0)
            if gt_bboxes_ignore is None:
                gt_bboxes_ignore = [None for _ in range(num_imgs)]
            sampling_results = []
            for i in range(num_imgs):
                assign_result = bbox_assigner.assign(proposal_list[i],
                                                     gt_bboxes[i],
                                                     gt_bboxes_ignore[i],
                                                     gt_labels[i])
                sampling_result = bbox_sampler.sample(
                    assign_result,
                    proposal_list[i],
                    gt_bboxes[i],
                    gt_labels[i],
                    feats=[lvl_feat[i][None] for lvl_feat in x])
                sampling_results.append(sampling_result)

        # bbox head forward and loss
        if self.with_bbox:
            rois = bbox2roi([res.bboxes for res in sampling_results])
            # TODO: a more flexible way to decide which feature maps to use
            bbox_feats = self.bbox_roi_extractor(
                x[:self.bbox_roi_extractor.num_inputs], rois)
            if self.with_shared_head:
                bbox_feats = self.shared_head(bbox_feats)
            cls_score, bbox_pred = self.bbox_head(bbox_feats)

            bbox_targets = self.bbox_head.get_target(sampling_results,
                                                     gt_bboxes, gt_labels,
                                                     self.train_cfg.rcnn)
            loss_bbox = self.bbox_head.loss(cls_score, bbox_pred,
                                            *bbox_targets)
            losses.update(loss_bbox)

        # mask head forward and loss
        if self.with_mask:
            if not self.share_roi_extractor:
                pos_rois = bbox2roi(
                    [res.pos_bboxes for res in sampling_results])
                mask_feats = self.mask_roi_extractor(
                    x[:self.mask_roi_extractor.num_inputs], pos_rois)
                if self.with_shared_head:
                    mask_feats = self.shared_head(mask_feats)
            else:
                pos_inds = []
                device = bbox_feats.device
                for res in sampling_results:
                    pos_inds.append(
                        torch.ones(
                            res.pos_bboxes.shape[0],
                            device=device,
                            dtype=torch.uint8))
                    pos_inds.append(
                        torch.zeros(
                            res.neg_bboxes.shape[0],
                            device=device,
                            dtype=torch.uint8))
                pos_inds = torch.cat(pos_inds)
                mask_feats = bbox_feats[pos_inds]
            mask_pred = self.mask_head(mask_feats)


            mask_targets = self.mask_head.get_target(sampling_results,
                                                     gt_masks,
                                                     self.train_cfg.rcnn)
            pos_labels = torch.cat(
                [res.pos_gt_labels for res in sampling_results])
            loss_mask = self.mask_head.loss(mask_pred, mask_targets,
                                            pos_labels)
            losses.update(loss_mask)

        return losses

    def simple_test(self, img, img_meta, proposals=None, rescale=False):
        """Test without augmentation."""
        assert self.with_bbox, "Bbox head must be implemented."

        x = self.extract_feat(img)

        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        det_bboxes, det_labels = self.simple_test_bboxes(
            x, img_meta, proposal_list, self.test_cfg.rcnn, rescale=rescale)
        bbox_results = bbox2result(det_bboxes, det_labels,
                                   self.bbox_head.num_classes)

        if not self.with_mask:
            return bbox_results
        else:
            segm_results = self.simple_test_mask(
                x, img_meta, det_bboxes, det_labels, rescale=rescale)
            return bbox_results, segm_results

    def aug_test(self, imgs, img_metas, rescale=False):
        """Test with augmentations.

        If rescale is False, then returned bboxes and masks will fit the scale
        of imgs[0].
        """
        # recompute feats to save memory
        proposal_list = self.aug_test_rpn(
            self.extract_feats(imgs), img_metas, self.test_cfg.rpn)
        det_bboxes, det_labels = self.aug_test_bboxes(
            self.extract_feats(imgs), img_metas, proposal_list,
            self.test_cfg.rcnn)

        if rescale:
            _det_bboxes = det_bboxes
        else:
            _det_bboxes = det_bboxes.clone()
            _det_bboxes[:, :4] *= img_metas[0][0]['scale_factor']
        bbox_results = bbox2result(_det_bboxes, det_labels,
                                   self.bbox_head.num_classes)

        # det_bboxes always keep the original scale
        if self.with_mask:
            segm_results = self.aug_test_mask(
                self.extract_feats(imgs), img_metas, det_bboxes, det_labels)
            return bbox_results, segm_results
        else:
            return bbox_results

同样,我们还是来理清一下思路
双阶段的检测同样是继承了BaseDetector, RPNTestMixin, BBoxTestMixin,MaskTestMixin来实现,典型的可以参考一下faster R-cnn。

首先是RPN网络来提取候选框(proposals),然后对这些proposals进行assign和采样,assign就是把候选框和gt进行匹配,区分出正负样本,如果是正样本还需要具体到哪一类(相当于粗略二分的基础上正样本还得分清楚),然后对这些候选框进行采样,再进行ROI_pooling(ROI_align),得到适合fc的feature,最后进行回归和分类。

我们也可以从forward_train看见这个过程

   def forward_train(self,
                      img,
                      img_meta,
                      gt_bboxes,
                      gt_labels,
                      gt_bboxes_ignore=None,
                      gt_masks=None,
                      proposals=None):

        x = self.extract_feat(img)
        losses = dict()
        # RPN forward and loss
        if self.with_rpn:
            ...
        # assign gts and sample proposals
        if self.with_bbox or self.with_mask:
           ...
        # bbox head forward and loss
        if self.with_bbox:
            rois = bbox2roi([res.bboxes for res in sampling_results])
           ...
        # mask head forward and loss
        if self.with_mask:
           ...

然后就是simple_test,和单阶段的类似

    def simple_test(self, img, img_meta, proposals=None, rescale=False):
        """Test without augmentation."""
        assert self.with_bbox, "Bbox head must be implemented."

        x = self.extract_feat(img)

        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals


        det_bboxes, det_labels = self.simple_test_bboxes(
            x, img_meta, proposal_list, self.test_cfg.rcnn, rescale=rescale)
        bbox_results = bbox2result(det_bboxes, det_labels,
                                   self.bbox_head.num_classes)

        if not self.with_mask:
            return bbox_results
        else:
            segm_results = self.simple_test_mask(
                x, img_meta, det_bboxes, det_labels, rescale=rescale)
            return bbox_results, segm_results

其中,输出结果为bbox_results, segm_results,同样从函数的结果可以看出来bbox_results输出的结果包含

  • det_bboxes 检测的边界框
  • det_labels 检测物体的类别

其他参考:
这里是mmdetection入门介绍 前言 部分
这里是mmdetection入门介绍 test.py解析 部分
这里是mmdetection入门介绍 train.py解析 部分
这里是mmdetection入门介绍 模型解析 部分

你可能感兴趣的:(小算法,进阶)