Kaggle泰坦尼克号之灾

kaggle比赛地址:

Titanic: Machine Learning from Disaster

相关比赛背景、数据等都可在网站查看。

1、环境配置

  • windows 10
  • python 3.6
  • pandas
  • numpy
  • jupyter notebook
  • seaborn

 2、数据分析

# 载入pandas包来读取csv格式的数据集
import pandas as pd
import numpy as np

# 把csv格式的数据集导入到DataFrame对象中
df_train = pd.read_csv('train.csv')
df_test = pd.read_csv('test.csv')
all_data = pd.concat([df_train, df_test], ignore_index = True)
all_data.head()

 输出结果Kaggle泰坦尼克号之灾_第1张图片

特征属性解释

Variable Definition Key Description 意义
PassengerId Passenger Id     乘客ID
Survived Survival

0 = No,

1 = Yes

  是否获救
Pclass Ticket class

1 = 1st,

2 = 2nd,

3 = 3rd

A proxy for socio-economic status (SES)
1st = Upper
2nd = Middle
3rd = Lower
乘客等级
Name Name     乘客姓名
Sex Sex     性别
Age Age in years   Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5 年龄
SibSp # of siblings / spouses aboard the Titanic   The dataset defines family relations in this way...
Sibling = brother, sister, stepbrother, stepsister
Spouse = husband, wife (mistresses and fiancés were ignored)
配偶和兄弟姐妹人数
Parch # of parents / children aboard the Titanic   The dataset defines family relations in this way...
Parent = mother, father
Child = daughter, son, stepdaughter, stepson
Some children travelled only with a nanny, therefore parch=0 for them.
父母与小孩人数
Ticket Ticket number     船票号码
Fare Passenger fare     票价
Cabin Cabin number     客舱号码
Embarked Port of Embarkation

C = Cherbourg,

Q = Queenstown,

S = Southampton

  登船港口

查看数据详情

all_data.info()

打印结果 


RangeIndex: 1309 entries, 0 to 1308
Data columns (total 12 columns):
Age            1046 non-null float64
Cabin          295 non-null object
Embarked       1307 non-null object
Fare           1308 non-null float64
Name           1309 non-null object
Parch          1309 non-null int64
PassengerId    1309 non-null int64
Pclass         1309 non-null int64
Sex            1309 non-null object
SibSp          1309 non-null int64
Survived       891 non-null float64
Ticket         1309 non-null object
dtypes: float64(3), int64(4), object(5)
memory usage: 122.8+ KB

数据大小为1309行*12列,但不少属性包含空值

再看看具体描述,数值型特征属性详情

all_data.describe()

输出结果

               Age         Fare        Parch  PassengerId       Pclass  \
count  1046.000000  1308.000000  1309.000000  1309.000000  1309.000000   
mean     29.881138    33.295479     0.385027   655.000000     2.294882   
std      14.413493    51.758668     0.865560   378.020061     0.837836   
min       0.170000     0.000000     0.000000     1.000000     1.000000   
25%      21.000000     7.895800     0.000000   328.000000     2.000000   
50%      28.000000    14.454200     0.000000   655.000000     3.000000   
75%      39.000000    31.275000     0.000000   982.000000     3.000000   
max      80.000000   512.329200     9.000000  1309.000000     3.000000   

             SibSp    Survived  
count  1309.000000  891.000000  
mean      0.498854    0.383838  
std       1.041658    0.486592  
min       0.000000    0.000000  
25%       0.000000    0.000000  
50%       0.000000    0.000000  
75%       1.000000    1.000000  
max       8.000000    1.000000  

乘客平均存活率约0.39,平均年龄约29.7岁

再看非数值型特征属性详情

all_data.describe(include=['O'])

 输出

              Cabin Embarked              Name   Sex    Ticket
count           295     1307              1309  1309      1309
unique          186        3              1307     2       929
top     C23 C25 C27        S  Kelly, Mr. James  male  CA. 2343
freq              6      914                 2   843        11

使用图表直观分析数据,调用matplotlib库

import matplotlib.pyplot as plt
import seaborn as sns

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

fig = plt.figure()
fig.set(alpha=0.2) # 设定图表颜色alpha参数

………………
………………
………………

plt.show()

分别根据不同特征属性分析获救情况

def Survived():
    fig = plt.figure()
    fig.set(alpha=0.2) # 设定图表颜色alpha参数
    # 查看总体获救情况
    all_data['Survived'].value_counts().plot(kind='bar')
    plt.title(u"是否获救情况(1为获救)")
    plt.ylabel(u"人数")
Survived()

Kaggle泰坦尼克号之灾_第2张图片

由于客观因素船上救生艇不足,导致大部分人没有获救

def Pclass():
    # 查看不同Pclass获救情况
    sur_pcl1 = all_data['Pclass'][all_data['Survived'] == 1].value_counts()
    sur_pcl0 = all_data['Pclass'][all_data['Survived'] == 0].value_counts()
    sur_pcl = pd.DataFrame({u'获救':sur_pcl1,u'未获救':sur_pcl0})
    sur_pcl.plot(kind='bar', stacked=True)
    plt.title(u"不同乘客等级的获救情况")
    plt.xlabel(u"乘客等级")
    plt.ylabel(u"人数")
Pclass()

Kaggle泰坦尼克号之灾_第3张图片

sns.barplot(x="Pclass", y="Survived", data=all_data)

 Kaggle泰坦尼克号之灾_第4张图片

乘客等级为1的乘客获救率最高,社会等级高的人获救几率高

def Sex():
    # 查看不同Sex获救情况
    sur_sex1 = all_data['Sex'][all_data['Survived'] == 1].value_counts()
    sur_sex0 = all_data['Sex'][all_data['Survived'] == 0].value_counts()
    sur_sex = pd.DataFrame({u'获救':sur_sex1,u'未获救':sur_sex0})
    print(sur_sex)
    sur_sex.plot(kind='bar', stacked=True)
    plt.title(u"不同性别的获救情况")
    plt.xlabel(u"性别")
    plt.ylabel(u"人数")
    # # fig = plt.figure()(6)
Sex()

Kaggle泰坦尼克号之灾_第5张图片

sns.barplot(x="Sex", y="Survived", data=all_data)

 Kaggle泰坦尼克号之灾_第6张图片

 救援时先救女性,再救男性,所以女性存活率高

# 查看不同Age获救情况
sur_age = sns.FacetGrid(all_data, col='Survived')
sur_age.map(plt.hist, 'Age', bins=20)

Kaggle泰坦尼克号之灾_第7张图片

sur_age.map(sns.distplot, 'Age', bins=20)

 

Kaggle泰坦尼克号之灾_第8张图片

 

sur_age = sns.FacetGrid(all_data, hue="Survived",aspect=2)
sur_age.map(sns.kdeplot,'Age',shade= True)
sur_age.set(xlim=(0, all_data['Age'].max()))
sur_age.add_legend()
plt.xlabel('Age')
plt.ylabel('density')

 Kaggle泰坦尼克号之灾_第9张图片

年龄小于15岁的存货超过半数,获救率更高,一般救援时,妇女儿童是首先需要救援的对象,也符合上面的规律

def Embarked():
    # 查看不同Embarked获救情况
    sur_emb1 = all_data['Embarked'][all_data['Survived'] == 1].value_counts()
    sur_emb0 = all_data['Embarked'][all_data['Survived'] == 0].value_counts()
    sur_emb = pd.DataFrame({u'获救':sur_emb1,u'未获救':sur_emb0})
    sur_emb.plot(kind='bar', stacked=True)
    plt.title(u"不同登陆港口的获救情况")
    plt.xlabel(u"登陆港口")
    plt.ylabel(u"人数")
Embarked()

Kaggle泰坦尼克号之灾_第10张图片

sns.barplot(x="Embarked", y="Survived", data=all_data)

 Kaggle泰坦尼克号之灾_第11张图片

C港口登陆的乘客一半以上获救,获救率最高

sns.barplot(x="SibSp", y="Survived", data=all_data)

 Kaggle泰坦尼克号之灾_第12张图片

 配偶和兄弟姐妹人数适中获救率更高

sns.barplot(x="Parch", y="Survived", data=all_data)

 Kaggle泰坦尼克号之灾_第13张图片

父母和子女人数适中获救率更高,但总体差异不大

# 查看不同Name的称呼的获救情况
all_data['Title'] = all_data['Name'].apply(lambda x:x.split(',')[1].split('.')[0].strip())
sns.barplot(x="Title", y="Survived", data=all_data)

 Kaggle泰坦尼克号之灾_第14张图片

 称谓包含这几种

{'Capt', 'Sir', 'Miss', 'Mlle', 'Don', 'Ms', 'Jonkheer', 'Mme', 'Col', 'Dr', 'Major', 'Rev', 'the Countess', 'Mrs', 'Lady', 'Master', 'Mr'}

 对其进行归类

Title_Dict = {}
Title_Dict.update(dict.fromkeys(['Capt', 'Col', 'Major', 'Dr', 'Rev'], 'Officer'))
Title_Dict.update(dict.fromkeys(['Don', 'Sir', 'the Countess', 'Dona', 'Lady'], 'Royalty'))
Title_Dict.update(dict.fromkeys(['Mme', 'Ms', 'Mrs'], 'Mrs'))
Title_Dict.update(dict.fromkeys(['Mlle', 'Miss'], 'Miss'))
Title_Dict.update(dict.fromkeys(['Mr'], 'Mr'))
Title_Dict.update(dict.fromkeys(['Master','Jonkheer'], 'Master'))

all_data['Title'] = all_data['Title'].map(Title_Dict)
sns.barplot(x="Title", y="Survived", data=all_data)

Kaggle泰坦尼克号之灾_第15张图片

除了之前分析的女性生存率高,登记时登记['Don', 'Sir', 'the Countess', 'Dona', 'Lady']的贵族生存率也很高

# 家庭成员数
all_data['FamilySize'] = all_data['SibSp'] + all_data['Parch'] + 1
sns.barplot(x="FamilySize", y="Survived", data=all_data)

 Kaggle泰坦尼克号之灾_第16张图片

把家庭成员人数分成4类,单身狗、一般夫妻或一般家庭、兄弟姐妹孩子有点多家庭、大家族。。。

def Fam_label(s):
    if (s == 1):
        return 1
    elif (2 <= s <= 4):
        return 2
    elif (4 < s <= 7):
        return 3
    elif (s > 7):
        return 4
all_data['FamilyLabel'] = all_data['FamilySize'].apply(Fam_label)
sns.barplot(x="FamilyLabel", y="Survived", data=all_data)

 Kaggle泰坦尼克号之灾_第17张图片

一般家庭生存率比较高 

# 不同船舱分析
all_data['Cabin'] = all_data['Cabin'].fillna('Unknown')
all_data['Deck'] = all_data['Cabin'].str.get(0)
sns.barplot(x="Deck", y="Survived", data=all_data)

 Kaggle泰坦尼克号之灾_第18张图片

 不同船舱距离救生船附近的距离不同,可能导致离得近的或者高级舱存活率高

 

# 共票人数分析
Ticket_Count = dict(all_data['Ticket'].value_counts())
all_data['TicketGroup'] = all_data['Ticket'].apply(lambda x:Ticket_Count[x])
sns.barplot(x='TicketGroup', y='Survived', data=all_data)

 Kaggle泰坦尼克号之灾_第19张图片

把共票人数分组 

def Ticket_Label(s):
	if (s == 1):
		return 1
	elif (2 <= s <= 4):
		return 2
	elif (4 < s <= 7):
		return 3
	elif (s > 7):
		return 4

all_data['TicketGroup'] = all_data['TicketGroup'].apply(Ticket_Label)
sns.barplot(x='TicketGroup', y='Survived', data=all_data)

 Kaggle泰坦尼克号之灾_第20张图片

 一般共票的都是家庭票居多

3、数据清洗


RangeIndex: 1309 entries, 0 to 1308
Data columns (total 12 columns):
Age            1046 non-null float64
Cabin          295 non-null object
Embarked       1307 non-null object
Fare           1308 non-null float64
Name           1309 non-null object
Parch          1309 non-null int64
PassengerId    1309 non-null int64
Pclass         1309 non-null int64
Sex            1309 non-null object
SibSp          1309 non-null int64
Survived       891 non-null float64
Ticket         1309 non-null object
dtypes: float64(3), int64(4), object(5)
memory usage: 122.8+ KB

 Age缺失值较多,缺少1309-1046=263,需要补值,此处采用随机森林生成空值的方法,选取Pcalss、Sex、Title三个特征建模

from sklearn.ensemble import RandomForestRegressor
age_df = all_data[['Age', 'Pclass','Sex','Title']]
# 利用get_dummies()进行独热编码,将拥有不同值的变量转换为0/1数值
age_df = pd.get_dummies(age_df)
known_age = age_df[age_df.Age.notnull()].as_matrix()
unknown_age = age_df[age_df.Age.isnull()].as_matrix()
y = known_age[:, 0]
X = known_age[:, 1:]
# 随机森林,n_estimators建立子树的数量,random_state指定随机生成一个确定的结果,n_jobs使用多少引擎处理
rfr = RandomForestRegressor(random_state=0, n_estimators=100, n_jobs=-1)
rfr.fit(X, y)
predictedAges = rfr.predict(unknown_age[:, 1::])
all_data.loc[ (all_data.Age.isnull()), 'Age' ] = predictedAges

Embarked的缺失值很少,缺少2个,打印相关信息

TicketGroup()

output:
      Age Cabin Embarked  Fare                                       Name  \
61   38.0   B28      NaN  80.0                        Icard, Miss. Amelie   
829  62.0   B28      NaN  80.0  Stone, Mrs. George Nelson (Martha Evelyn)   

     Parch  PassengerId  Pclass     Sex  SibSp  Survived  Ticket Title  \
61       0           62       1  female      0       1.0  113572  Miss   
829      0          830       1  female      0       1.0  113572   Mrs   

     FamilySize  FamilyLabel Deck  TicketGroup  
61            1            1    B            2  
829           1            1    B            2  

这两位都是Pclass=1,女性,共票,Fare=80,Cabin=B28 ,SibSp=0,Parch=0,推测两个人可能是认识的

sns.countplot('Embarked',hue='Survived',data=all_data)

Kaggle泰坦尼克号之灾_第21张图片

 

print(all_data.describe())

output:
               Age         Fare        Parch  PassengerId       Pclass  \
count  1309.000000  1308.000000  1309.000000  1309.000000  1309.000000   
mean     29.519228    33.295479     0.385027   655.000000     2.294882   
std      13.417745    51.758668     0.865560   378.020061     0.837836   
min       0.170000     0.000000     0.000000     1.000000     1.000000   
25%      21.000000     7.895800     0.000000   328.000000     2.000000   
50%      28.226256    14.454200     0.000000   655.000000     3.000000   
75%      36.500000    31.275000     0.000000   982.000000     3.000000   
max      80.000000   512.329200     9.000000  1309.000000     3.000000   

             SibSp    Survived   FamilySize  FamilyLabel  TicketGroup  
count  1309.000000  891.000000  1309.000000  1309.000000  1309.000000  
mean      0.498854    0.383838     1.883881     1.473644     1.568373  
std       1.041658    0.486592     1.583639     0.658014     0.716308  
min       0.000000    0.000000     1.000000     1.000000     1.000000  
25%       0.000000    0.000000     1.000000     1.000000     1.000000  
50%       0.000000    0.000000     1.000000     1.000000     1.000000  
75%       1.000000    1.000000     2.000000     2.000000     2.000000  
max       8.000000    1.000000    11.000000     4.000000     4.000000  

打印出不同Pclass、Embarked的票价中位数

print(all_data.groupby(by=["Pclass","Embarked"]).Fare.median())

output:
Pclass  Embarked
1       C           76.7292
        Q           90.0000
        S           52.0000
2       C           15.3146
        Q           12.3500
        S           15.3750
3       C            7.8958
        Q            7.7500
        S            8.0500
Name: Fare, dtype: float64

输出可以看出,Pclass=1、Fare=80的人群中,大概率从Embarked=C港口出发,填充C

all_data['Embarked'] = all_data['Embarked'].fillna('C')

Cabin字段缺失值较多,考虑一部分确实可能是船上工作人员的房间,此处不作为特征进行预测,

4、建模预测

后续根据需要进行建模预测,选择随机森林、SVM等……

你可能感兴趣的:(kaggle)