- 四层协议攻防手册:从SYN Flood到UDP反射的深度防御
群联云防护小杜
安全问题汇总udp网络网络协议服务器爬虫运维web安全
一、四层协议攻击类型与特征攻击类型协议层特征SYNFloodTCP大量半开连接,SYN_RECV状态堆积UDP反射放大UDP小请求包触发大响应(如NTP、DNS响应)TCP分片攻击TCP发送异常分片耗尽重组资源连接耗尽攻击TCP建立大量空闲连接占用端口资源二、TCP层定制防御方案1.SYNCookie防护(内核参数优化)#启用SYNCookieecho1>/proc/sys/net/ipv4/tc
- 基于Python PYQT5 的相机定时采集图像程序,GUI打包独立运行
夏时summer time
pythonqt数码相机相机
基于PythonPYQT5编写相机定时采集图像及手动采集版本介绍Python3.6pyqt55.15.4pyqt5-tools5.15.4.3.2另外就是常用的cv2和numpy包fromPyQt5importQtCore,QtGui,QtWidgetsfromPyQt5importQtCore,QtGui,QtWidgetsimportcv2importnumpyasnpfromdatetime
- langchain4j+Tika小试牛刀
llm
序本文主要研究一下langchain4j结合ApacheTika进行文档解析步骤pom.xmldev.langchain4jlangchain4j-document-parser-apache-tika1.0.0-beta1examplepublicclassTikaTest{publicstaticvoidmain(String[]args){Stringpath=System.getPrope
- 【论文阅读】Persistent Homology Captures the Generalization of Neural Networks Without A Validation Set
开心星人
论文阅读论文阅读
将神经网络表征为加权的无环图,直接根据模型的权重矩阵构造PD。计算相邻batch的权重矩阵PD之间的距离。比较同调收敛性与神经网络的验证精度变化趋势摘要机器学习从业者通常通过监控模型的某些指标来估计其泛化误差,并在训练数值收敛之前停止训练,以防止过拟合。通常,这种误差度量或任务相关的指标是通过一个验证集(holdoutset)来计算的。因为这些数据没有直接用于更新模型参数,通常假设模型在验证集上的
- 【论文阅读】实时全能分割模型
万里守约
论文阅读论文阅读图像分割图像处理计算机视觉
文章目录导言1、论文简介2、论文主要方法3、论文针对的问题4、论文创新点总结导言在最近的计算机视觉领域,针对实时多任务分割的需求日益增长,特别是在交互式分割、全景分割和视频实例分割等多种应用场景中。为了解决这些挑战,本文介绍了一种新方法——RMP-SAM(Real-TimeMulti-PurposeSegmentAnything),旨在实现实时的多功能分割。RMP-SAM结合了动态卷积与高效的模型
- 论文阅读:2023 arxiv Multiscale Positive-Unlabeled Detection of AI-Generated Texts
CSPhD-winston-杨帆
论文阅读论文阅读人工智能
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328MultiscalePositive-UnlabeledDetectionofAI-GeneratedTextshttps://arxiv.org/abs/2305.18149https://www.doubao.com/chat/211427064915225
- 论文阅读笔记——MAGICDRIVE: STREET VIEW GENERATION WITH DIVERSE 3D GEOMETRY CONTROL
寻丶幽风
论文阅读笔记论文阅读笔记3d人工智能自动驾驶
MagicDrive论文MagicDrive通过对3D数据和文本数据的多模态条件融合和隐式视角转换,实现了高质量、多视角一致的3D场景生成。几何条件编码Cross-attention:针对顺序数据,适合处理文本标记和边界框等可变长度输入。Additiveencoderbranch:对于地图等网络状规则数据,能够有效保留空间结构。对于文本按照模版构建:“Adrivingsceneat{locatio
- 【论文阅读】Availability Attacks Create Shortcuts
开心星人
论文阅读论文阅读
还得重复读这一篇论文,有些地方理解不够透彻可用性攻击通过在训练数据中添加难以察觉的扰动,使数据无法被机器学习算法利用,从而防止数据被未经授权地使用。例如,一家私人公司未经用户同意就收集了超过30亿张人脸图像,用于构建商业人脸识别模型。为解决这些担忧,许多数据投毒攻击被提出,以防止数据被未经授权的深度模型学习。它们通过在训练数据中添加难以察觉的扰动,使模型无法从数据中学习太多信息,从而导致模型在未见
- .net 4.0环境异步方法实现,异步委托和回调异常处理
蔚蓝星空-大强
异步多线程c#asp.net
.net4.0环境异步方法实现,异步委托和回调异常处理无返回值的异步方法通过委托实现staticvoidMain(string[]args){//异步执行写入数据任务,不阻塞主线程任务SetDataAsync(1);Console.WriteLine("主线程后续任务...");Console.ReadKey();}publicstaticvoidSetDataAsync(intnum){//这里
- Description of a Poisson Imagery Super Resolution Algorithm 论文阅读
青铜锁00
论文阅读Radar论文阅读
DescriptionofaPoissonImagerySuperResolutionAlgorithm1.研究目标与意义1.1研究目标1.2实际意义2.创新方法与模型2.1核心思路2.2关键公式与推导2.2.1贝叶斯框架与概率模型2.2.2MAP估计的优化目标2.2.3超分辨率参数α2.3对比传统方法的优势3.实验验证与结果3.1实验设计3.2关键结果4.未来研究方向(实波束雷达领域)4.1挑战
- Sklearn.model_selection.GridSearchCV
kakak_
MachineLearning
sklearn.model_selection.GridSearchCV具体在scikit-learn中,主要是使用网格搜索,即GridSearchCV类。estimator:即调整的模型param_grid:即要调参的参数列表,以dict呈现。cv:S折交叉验证的折数,即将训练集分成多少份来进行交叉验证。默认是3,。如果样本较多的话,可以适度增大cv的值。scoring:评价标准。获取最好的模型
- 大模型学习终极指南:从新手到专家的必经之路,全网最详尽解析,你敢挑战吗?
大模型入门教程
学习人工智能AI大模型大模型学习大模型教程AI大模型
随着人工智能技术的飞速发展,大模型(Large-ScaleModels)已经成为推动自然语言处理(NLP)、计算机视觉(CV)等领域进步的关键因素。本文将为您详细介绍从零开始学习大模型直至成为专家的全过程,包括所需掌握的知识点、学习资源以及实践建议等。无论您是初学者还是有一定基础的专业人士,都能从中获得有价值的指导。一、基础知识准备在开始学习大模型之前,需要先掌握一些基础知识,这些知识将为后续的学
- 机器学习——KNN超参数
练习AI两年半
机器学习人工智能深度学习
sklearn.model_selection.GridSearchCV是scikit-learn中用于超参数调优的核心工具,通过结合交叉验证和网格搜索实现模型参数的自动化优化。以下是详细介绍:一、功能概述GridSearchCV在指定参数网格上穷举所有可能的超参数组合,通过交叉验证评估每组参数的性能,最终选择最优参数组合。其核心价值在于:自动化调参:替代手动参数调试,提升效率3。交叉验证支持:通
- 【图像去噪】论文精读:CVPR 2025 | DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables
十小大
图像去噪深度学习计算机视觉人工智能图像处理论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction2.Relatedworks2.1.ColorImagedenoising2.2.ReplacingCNNwithLUT3
- java语言map的五种遍历方法
0319zz
Java细节java开发语言
publicstaticvoidmain(String[]args){Mapmap=newHashMapentry:map.entrySet()){Stringkey=entry.getKey();Integervalue=entry.getValue();System.out.println("Key:"+key+",Value:"+value);}//第二种:使用for-each循环和keyS
- Opencv之计算机视觉一
闭月之泪舞
计算机视觉计算机视觉opencvpython
一、环境准备使用opencv库来实现简单的计算机视觉。需要安装两个库:opencv-python和opencv-contrib-python,版本可以自行选择,注意不同版本的opencv中的某些函数名和用法可能不同pipinstallopencv-python==3.4.18.65-ihttps://pypi.tuna.tsinghua.edu.cn/simplepipinstallopencv-
- OpenCV 4.2.0与扩展模块安装与应用指南
土城三富
本文还有配套的精品资源,点击获取简介:OpenCV4.2.0是一个先进的计算机视觉库,包含了图像处理、计算机视觉和机器学习算法。本压缩包包含OpenCV核心库和扩展模块(opencv_contrib),版本均为4.2.0。该版本引入了性能增强、API优化以及对深度学习框架和硬件加速技术的更新支持。扩展模块提供了额外的实验性算法和功能,有助于研究和开发新算法。指南详细介绍了如何安装和配置这些库,并提
- OpenCV ML 模块使用指南
ice_junjun
OpenCVopencv人工智能计算机视觉
一、模块概述OpenCV的ML模块提供了丰富的机器学习算法,可用于解决各种计算机视觉和数据分析问题。本指南将详细介绍该模块中主要的机器学习算法,包括支持向量机(SVM)、K均值聚类(K-Means)和神经网络(ANN),并结合图像分类和聚类分析这两个典型应用场景进行代码实现与解释。二、主要函数及类详解(一)支持向量机(SVM):cv.ml.SVM_create()功能支持向量机(SVM)是一种强大
- WHAM 人体3d重建部署笔记
AI算法网奇
深度学习宝典3d笔记
目录依赖项:mmpose的依赖项:demo脚本WHAM:ReconstructingWorld-groundedHumanswithAccurate3DMotion2024依赖项:pipinstallmmposemmpose的依赖项:mmcv>=2.0.0,=3.0.0,=0.4.0,<1.0.0demo脚本Youcantrywithoneexamplarvideo:pythondemo.py--
- Linux进程间通信:消息队列与msgget函数使用详解
无形小手
本文还有配套的精品资源,点击获取简介:本文深入介绍了Linux消息队列的创建和操作方法,包括msgget()、msgsnd()和msgrcv()三个核心函数。介绍了通过消息队列实现进程间通信的基础实验步骤和关键要点,如键值计算、消息发送和接收,以及进程间通信时常见的权限控制、消息顺序、类型匹配和同步问题。通过学习这些内容,开发者能够更好地理解和掌握如何在项目中实现高效的进程间通信。1.Linux消
- dao传递类参数 mybatis_mybatis传递参数的方法
皮耶霍
dao传递类参数mybatis
一.传递一个参数例:根据员工编号查询员工的基本信息1.在dao接口中声明一个方法2.在mapper中实现该方法3.测试/***传递一个参数*/publicclassTest02{publicstaticvoidmain(String[]args){//获取SqlSession对象SqlSessionsession=SqlSessionFactoryUtil.getSession();//获取dao
- opencv对图像处理
syfirst1111
图像处理opencv计算机视觉
形态学转换:基于图像形状的操作,通常在二进制图像上执行。腐蚀、膨胀:腐蚀:求局部最小值,原图高亮部分被蚕食膨胀:求局部最大值,原图高亮部分部分扩张img=cv.imread(path)kenel=np.ones((5,5),np.uint8)#创建核结构img2=cv.erode(img,kenel)#腐蚀去噪img1=cv.dilate(img,kenel)#膨胀目标增大,填充孔洞图像平滑(去噪
- OpenCV图像处理基础2
指尖下的技术
OpenCVopencv图像处理计算机视觉
接着上一篇OpenCV图像处理基础1继续说。图像阈值处理1、简单阈值处理ret,thresholded_image=cv2.threshold(image,thresh,maxval,cv2.THRESH_BINARY)thresh是阈值,maxval是最大值。2、自适应阈值处理thresholded_image=cv2.adaptiveThreshold(image,maxval,cv2.ADA
- PyTorch数据归一化处理:transforms
2401_87555420
pytorch人工智能python
##1.数据归一化处理:transforms.Normalize###1.1理解torchvision*torchvision.transforms:常用的图像预处理方法*torchvision.datasets:常用的数据集Dataset实现*torchvision.models:常用的CV(预训练)模型实现torchvision.transforms:常用的数据预处理方法,提升泛化能力,包括:
- 力扣hot100:15.轮转数组
star-yp
力扣hot100leetcode算法java日常记录
题目描述第一次:纯暴力复杂度太高:O(N^2),未通过测试classSolution{publicvoidrotate(int[]arr,intk){for(inti=0;i0;j--){arr[j]=arr[j-1];}arr[0]=flag;}}}第二次:反转三次复杂度降低:O(N),通过测试classSolution{publicvoidrotate(int[]arr,intk){if(ar
- 初始OpenCV
指尖下的技术
OpenCVopencv人工智能计算机视觉
OpenCV是一个功能强大、应用广泛的计算机视觉库,它为开发人员提供了丰富的工具和算法,可以帮助他们快速构建各种视觉应用。随着计算机视觉技术的不断发展,OpenCV也将会继续发挥重要的作用。OpenCV提供了大量的计算机视觉算法和图像处理工具,广泛应用于图像和视频的处理、分析以及机器学习领域。所以学习人计算机视觉或者图像处理方面的知识,OpenCV是一个要重点学习的工具库。首先介绍一下OpenCV
- CBNetV2: A Composite Backbone Network Architecture for Object Detection论文阅读
Laughing-q
论文阅读深度学习人工智能目标检测实例分割transformer
CBNetV2:ACompositeBackboneNetworkArchitectureforObjectDetection论文阅读介绍方法CBNetV2融合方式对Assistant的监督实验与SOTA的比较在主流backbone架构上的通用性与更宽更深的网络比较与可变形卷积的兼容在主流检测器上的模型适用性在SwinTransformer上的模型适用性消融实验paper:https://arxi
- GStreamer —— 3.2、Qt+GStreamer+OpenCV制作图像处理播放器(对每帧图像处理),支持本地mp4文件、rtsp流、usb摄像头等(可跨平台,附源码)
信必诺
GStreamerQtGStreamerQt
运行效果 介绍 本项目是一个结合了Qt、GStreamer和OpenCV的跨平台图像处理播放器项目。该
- 人脸识别的一些代码
饿了就干饭
CV相关人脸识别
1、cv2入门函数imread及其相关操作2、(详解)opencv里的cv2.resize改变图片大小Python3、机器学习之人脸识别face_recognition使用4、使用face_recognition进行人脸校准5、简单的人脸识别通用流程示意图(这个看着写的挺好的)6、face_recognition和图像处理中left、top、right、bottom解释7、使用pillow库对图片
- Java基础 3.22
anlogic
javajava开发语言jvm
1.break练习//1-100之内的数求和,求当和第一次大于20的当前数ipublicclassBreak01{publicstaticvoidmain(String[]args){intn=0;intcount=0;for(inti=1;i20){n=i;System.out.println("和大于20,退出循环,当前i为"+n);break;}}}}//实现登录验证,有3次机会,如果用户名
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l