- SalFAU-Net:显著性目标检测的显著性融合注意U-Net
明初啥都能学会
目标检测人工智能计算机视觉
SalFAU-Net:显著性目标检测的显著性融合注意U-Net摘要IntroductionRelatedWorksSalFAU-Net:SaliencyFusionAttentionU-NetforSalientObjectDetection摘要显著目标检测(SOD)在计算机视觉中仍然是一个重要的任务,其应用范围从图像分割到自动驾驶。基于全卷积网络(FCN)的方法在过去几十年里在视觉显著性检测方面
- 基于深度学习的遥感目标检测系统:UI界面、R-CNN模型与数据集准备
2025年数学建模美赛
R-CNN检测系统人工智能深度学习r语言cnnpythonui目标检测
一、引言遥感图像中的目标检测在很多领域,如环境监测、土地利用、城市规划、农业资源监测等方面有着广泛应用。遥感图像具有高分辨率和丰富的空间信息,但同时也带来了目标检测中的许多挑战,特别是在目标尺度变化、遮挡和复杂背景的情况下。因此,采用深度学习技术,尤其是卷积神经网络(CNN)和区域卷积神经网络(R-CNN),在遥感图像目标检测中取得了显著的成果。本文将详细介绍基于深度学习的遥感目标检测系统,使用R
- ultralytics 是什么?
博刻
AI学习笔记python
ultralytics是一个用于计算机视觉任务的Python库,专注于提供高效、易用的目标检测、实例分割和图像分类工具。它最著名的功能是实现YOLO(YouOnlyLookOnce)系列模型,特别是最新的YOLOv8。1.YOLO是什么?YOLO是一种流行的目标检测算法,以其速度快和精度高而闻名。YOLO的核心思想是将目标检测问题转化为一个回归问题,直接预测目标的边界框和类别。YOLOv8是YOL
- json格式的标记文件转yolo格式(txt)的标记文件
帅气的亮
jsonYOLOpython
背景我在使用anylabeling标记软件时发现导出的标记文件格式只能是json格式,而我yolov8训练模型的标记文件需要时txt格式的,所以我需要写一个转换脚本脚本1.脚本1这个脚本是针对于矩形框标记的转换,也就是目标检测importjsonimportosdefconvert_json_to_yolo(json_file_path,output_dir,class_mapping):"""将
- 基于R-CNN深度学习的无人机目标检测系统:数据集、模型和UI界面的完整实现
2025年数学建模美赛
R-CNN检测系统深度学习cnn无人机计算机视觉目标检测人工智能
摘要随着无人机技术的迅猛发展,无人机在军事、农业、环境监测等多个领域的应用日益广泛。无人机目标检测系统的建设成为提升无人机自主飞行和环境感知能力的重要环节。本文将详细介绍如何构建一个基于深度学习的无人机目标检测系统,采用R-CNN(区域卷积神经网络)算法,通过用户界面设计和数据集处理,实现高效的目标检测功能。通过本项目,旨在为无人机目标检测提供一种可行的解决方案,并提高其在复杂环境下的工作效率。目
- 基于YOLOv8+PyQt5的密集人群计数检测系统
人工智能教学实践
YOLOqt目标检测
基于YOLOv8+PyQt5的密集人群计数检测系统是一个结合了目标检测算法与图形用户界面的项目,以下是相关介绍:【毕业设计参考】基于yolov8+pyqt5的密集人群计数检测系统.zip资源-CSDN文库系统概述该系统旨在实时分析某一区域内的人群数量与分布情况,将YOLOv8算法的高效目标检测能力与PyQt5框架的简洁直观界面相结合,能够实时捕获视频流,通过YOLOv8进行人群检测,并在用户界面中
- YOLOv9改进,YOLOv9检测头融合ASFF(自适应空间特征融合),全网首发
挂科边缘
YOLOv9改进YOLO目标检测人工智能深度学习计算机视觉
摘要一种新颖的数据驱动的金字塔特征融合策略,称为自适应空间特征融合(ASFF)。它学习了在空间上过滤冲突信息以抑制不一致的方法,从而提高了特征的尺度不变性,并引入了几乎免费的推理开销。#理论介绍目标检测在处理不同尺度的目标时,常采用特征金字塔结构。然而,这种金字塔结构在单步检测器中存在尺度不一致性问题,即不同尺度的特征层在检测过程中可能产生冲突,导致精度下降。ASFF方法通过学习每个尺度特征的自适
- 深度学习之基于Django+YOLOv5商标识别
Q1744828575
pythonplotlypython
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景在数字化时代,商标作为企业的重要资产,其保护和管理显得尤为重要。然而,传统的商标识别方法往往依赖于人工审查,效率低下且容易出错。随着深度学习技术的不断发展,尤其是目标检测领域的进步,自动化、高精度的商标识别成为可能。本项目旨在利用DjangoWeb框架和YOLO
- YOLOv8改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
Limiiiing
YOLOv8改进专栏YOLO网络目标检测深度学习计算机视觉
一、本文介绍本文记录的是基于UniRepLKNet的YOLOv8骨干网络改进方法研究。UniRepLKNet提出了独特的大核设计能有效捕捉图像特征,在多模态任务中展现出强大的通用感知能力。将UniRepLKNet应用到YOLOv8的骨干网络中,提升YOLOv8在目标检测任务中的精度和效率。本文在YOLOv8的基础上配置了原论文中unireplknet_a,unireplknet_f,unirepl
- 计算机视觉目标检测-DETR网络
next_travel
计算机视觉目标检测人工智能
目录摘要abstractDETR目标检测网络详解二分图匹配和损失函数DETR总结总结摘要DETR(DEtectionTRansformer)是由FacebookAI提出的一种基于Transformer架构的端到端目标检测方法。它通过将目标检测建模为集合预测问题,摒弃了锚框设计和非极大值抑制(NMS)等复杂后处理步骤。DETR使用卷积神经网络提取图像特征,并将其通过位置编码转换为输入序列,送入Tra
- 使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统 yolov8来训练无人机数据集并检测无人机
QQ_1309399183
无人机类YOLO无人机深度学习
使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统yolov8来训练无人机数据集并检测无人机无人机数据集,yolo格式种类为uav,一共近5w张图片,如何用yolov8代码训练无人机检测数据集文章目录以下文章及内容仅供参考。1.环境部署2.数据预处理数据集准备划分数据集3.模型定义4.训练模型5.评估模型6.结果分析与可视化7.集成与部署PyQt6GUI(`
- YOLO到XML:轻松转换标注文件,助力计算机视觉项目
m0_69670384
YOLOxml计算机视觉
YOLO到XML:轻松转换标注文件,助力计算机视觉项目在计算机视觉项目中,数据标注是至关重要的一步。不同的算法和框架可能需要不同格式的标注文件。YOLO(YouOnlyLookOnce)格式因其简洁和高效,在目标检测任务中备受欢迎。然而,有时我们可能需要将YOLO格式的标注文件转换为XML格式,以便与其他工具或框架兼容。本文将详细介绍如何将YOLO格式的标注文件批量转换为XML格式,助力你的计算机
- 目标检测算法以及常用库概述
YOLO大师
目标检测算法人工智能
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例目标检测是在图像中发现并识别物体的过程,它是深度学习和图像处理领域的重要成果之一。在创建物体定位时,识别物体时,常见的一种方法是使用边界框。这种方法具有很高的通用,可以训练目标检测模型来识别和检测多个特
- 医学类 使用TransUNet、UNet、DeepLabV3+、HRNet、PSPNet 模型对息肉分割数据集进行训练、评估和可视化 EDD2020息肉数据集分割数据集
计算机C9硕士_算法工程师
数据集语义分割医学类数据集语义分割息肉TransUNetUNet
息肉数据集/息肉瘤分割项目解决(已处理好:EDD2020数据集(EndoscopyDiseaseDetectionandSegmentationChallenge)该息肉分割数据集主要包含人体生长的(肠胃)息肉用于器官内部息肉瘤分割,息肉目标检测,息肉定位任务息肉分割是一个重要的医学影像分析任务,特别是在内窥镜检查中。EDD2020数据集是一个很好的起点。我们将使用几种流行的深度学习模型(如Tra
- 【学习笔记】昇思25天学习打卡(D14)CV05-SSD目标检测.ipynb
UnseenMe
昇思学习笔记目标检测
SSD目标检测模型简介SSD,全称SingleShotMultiBoxDetector,是WeiLiu在ECCV2016上提出的一种目标检测算法。使用NvidiaTitanX在VOC2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(meanAveragePrecision)以及59FPS;对于512x512的网络,达到了76.9%mAP,超越当时最强的FasterRC
- 2023-简单点-非极大值抑制NMS
万物琴弦光锥之外
目标跟踪人工智能计算机视觉
非极大值抑制(Non-MaximumSuppression,NMS)是一种在目标检测中常用的后处理技术。NMS能够抑制那些与真实目标重叠较大的冗余检测框,留下最好的一个。非极大值抑制(Non-MaximumSuppression,NMS)的原理是:在目标检测中,对于检测到的冗余框,保留置信度最高的那个,抑制其他与它有较大重叠的冗余框。其基本原理是先在图像中找到所有可能包含目标物体的矩形区域,并按照
- 使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统 yolov8来训练无人机数据集并检测无人机
QQ_767172261
无人及视角YOLO无人机深度学习
使用YOLOv8训练一个无人机(UAV)检测模型,深度学习目标检测中_并开发一个完整的系统yolov8来训练无人机数据集并检测无人机无人机数据集,yolo格式种类为uav,一共近5w张图片,如何用yolov8代码训练无人机检测数据集文章目录以下文章及内容仅供参考。1.环境部署2.数据预处理数据集准备划分数据集3.模型定义4.训练模型5.评估模型6.结果分析与可视化7.集成与部署PyQt6GUI(`
- 清华大学提出Pointformer:基于Transformer的3D目标检测
Amusi(CVer)
计算机视觉论文速递Transformer3D目标检测深度学习计算机视觉机器学习人工智能自动驾驶
没错!Transformer的"魔爪"已经伸向3D目标检测了。Pointformer:用于3D点云的特征学习backbone,可结合并提高现有的3D点云目标检测网络性能,如VoteNet、PointRCNN和CBGS等。注:文末附【Transformer】和【3D目标检测】学习交流群Transformer最近在3D点云方向应用的工作可以看一下:牛津大学等提出:PointTransformer清华大
- 【深度学习】常见模型-卷积神经网络(Convolutional Neural Networks, CNN)
IT古董
人工智能深度学习机器学习深度学习cnn人工智能
卷积神经网络(CNN)概念简介卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一种专门用于处理数据具有网格状拓扑结构(如图像、语音)的深度学习模型。它通过卷积操作从输入数据中提取局部特征,并逐层构建更复杂的特征表示,广泛应用于图像分类、目标检测、语音识别等领域。关键组成部分卷积层(ConvolutionalLayer)使用卷积核(滤波器)在输入上滑动,提取局部特征。
- YOLOV11改进1-检测头篇
~啥也不会~
YOLO人工智能目标检测神经网络深度学习
文章目录前言一、YAML修改二、模型训练1.数据集准备2.环境准备3.训练3.1原结构训练3.2更改后的模型三.效果对比1.原始结构2.修改后的结果3.详细对比总结前言 目标检测领域里,小目标一直是一个难点问题,虽然我们可以用YOLO+SAHI的方式进行滑动窗口推理以提升准确率,但是他的耗时会线性增强,毕竟一张大图会被切成很多小图去推理,所以在很多场景下无法得到应用。这里,我们从探测头入手,
- NCNN推理
呆呆珝
推理框架c++人工智能
1.前言ncnn是一个高性能的神经网络前向计算框架,专门针对移动设备和嵌入式设备设计。它由腾讯优图实验室开发,旨在提供高效的神经网络推理能力,特别是在资源受限的环境中,如智能手机和嵌入式系统。ncnn被广泛应用于移动端和嵌入式设备上的各种深度学习应用,包括但不限于:图像分类/目标检测/语义分割/人脸识别/图像生成与处理2.NCNN的CMakeLists.txt编写ncnn的头文件,链接文件,静态链
- 基于深度学习的鸟类识别系统详解(UI界面 + YOLOv10 + 数据集)
2025年数学建模美赛
深度学习uiYOLO人工智能python计算机视觉
引言鸟类识别是计算机视觉领域中一个独具挑战性的任务,尤其是在复杂的自然环境中,识别不同种类的鸟类需要非常强大的模型和丰富的数据集。随着深度学习技术的发展,基于YOLO(YouOnlyLookOnce)系列模型的目标检测系统展现了卓越的性能,特别是在速度和精度上的平衡方面。本博客将详细讲解如何利用YOLOv10模型来构建一个基于深度学习的鸟类识别系统。该系统会结合自定义鸟类数据集,设计一个简洁直观的
- 目标检测实践过程中,遇到“No module named ‘torch._six’”报错的一个快速解决方案(无需重装PyTorch)
Cold_Rain02
深度学习Python目标检测人工智能计算机视觉
很多人在按照网络、书籍教程中的流程尝试自己实现一个基于Faster-RCNN的目标检测模型时,如果调用了PyTorch官方github上的文件时,coco_eval.py文件中会触发报错。1.报错原因PyTorch在2.0之后的版本中移除了_six,导致在coco_eval.py中调用torch._six失败2.解决方案(1)直接根据代码内容修改代码我们仔细观察coco_eval.py的代码,发现
- [Python从零到壹] 七十七.图像识别及经典案例篇之目标检测入门普及和ImageAI对象检测详解
Eastmount
Python从零到壹python目标检测ImageAI图像是被基础系列
欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智
- YOLOv10改进,YOLOv10添加ASFF检测头(自适应空间特征融合),添加小目标检测层(四头检测)+CA注意机制,全网首发
挂科边缘
YOLOv10改进YOLO目标检测目标跟踪人工智能计算机视觉深度学习
摘要一种新颖的数据驱动的金字塔特征融合策略,称为自适应空间特征融合(ASFF)。它学习了在空间上过滤冲突信息以抑制不一致的方法,从而提高了特征的尺度不变性,并引入了几乎免费的推理开销。#理论介绍目标检测在处理不同尺度的目标时,常采用特征金字塔结构。然而,这种金字塔结构在单步检测器中存在尺度不一致性问题,即不同尺度的特征层在检测过程中可能产生冲突,导致精度下降。ASFF方法通过学习每个尺度特征的自适
- 交通领域当中的视觉识别算法
若木胡
交通数据探索算法
以下是一些交通领域中常见的视觉识别算法:目标检测算法YOLO系列:YouOnlyLookOnce(YOLO)算法以其快速高效的特点在交通领域得到广泛应用。它能够在一张图像中同时检测多个目标,并快速确定目标的位置和类别。例如,在车辆检测中,可以准确识别出道路上不同类型的车辆,如轿车、卡车、公交车等;在行人检测方面,能够实时检测出行人的位置和姿态,为自动驾驶车辆或交通监控系统提供重要信息。YOLOv3
- 【揭秘】图像算法工程师岗位如何进入?
认识祂
人工智能算法图像算法工程师
“图像算法工程师,主要专注于开发图像处理和计算机视觉算法,广泛应用于各行业。本文,我们来揭秘一下他们的日常工作,以及如何成为这一领域的专业人才。”01图像算法工程师的日常工作算法设计与开发图像算法工程师的核心任务是设计和开发算法,以解决特定的图像处理或计算机视觉问题。常见的任务包括:图像分类:使用卷积神经网络(CNN)对图像进行分类,常见算法如ResNet、VGG。目标检测:在图像中定位并标注物体
- 毕设分享 深度学习街道行人流量计数系统
fawubio_A
毕业设计python毕设
文章目录0前言1项目运行效果2设计概要2原理介绍2.1目标检测概况什么是目标检测?发展阶段2.2行人检测行人检测简介行人检测技术难点行人检测实现效果4最后0前言这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要
- YOLOv11目标检测模型部署到微信小程序上
小阿技术
YOLO目标跟踪人工智能微信小程序目标检测计算机视觉python
1.效果YOLOv11目标检测模型部署到微信小程序上2.后端主要代码importosimporttimeimportnumpyasnpimporttorchfromflaskimportFlask,request,send_fileimportcv2fromultralyticsimportYOLO#导入YOLOv11模型,需要提前安装ultralytics库#初始化Flask应用app=Flas
- 基于C++和ONNX Runtime的YOLOv5目标检测实战
浪浪山小白兔
c++YOLO目标检测
1.前言在计算机视觉领域,目标检测是一项关键任务,其应用广泛,涵盖了安防监控、自动驾驶、工业检测等众多领域。YOLOv5作为一种先进的目标检测算法,以其速度快、精度高的特点备受关注。本文将详细介绍如何使用C++结合ONNXRuntime推理引擎来部署YOLOv5模型,实现高效的目标检测。2.ONNX与YOLOv52.1ONNX简介ONNX(OpenNeuralNetworkExchange)是一种
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象