- 使用matlab的热门问题
七十二五
值得关注matlab开发语言青少年编程算法经验分享
MATLAB广泛应用于科学计算、数据分析、信号处理、图像处理、机器学习等多个领域,因此热门问题也涵盖了这些方面。以下是一些可能被认为当前最热门的MATLAB问题:深度学习与神经网络:如何使用MATLAB的深度学习工具箱(DeepLearningToolbox)来构建和训练神经网络?如何利用MATLAB进行图像识别、语音识别或自然语言处理等深度学习应用?数据分析与可视化:如何使用MATLAB进行大数
- 人工智能:破局与创新的较量,谁将主宰未来?
猫之角
一、AI发展趋势1.1数据驱动的增长AI的快速发展离不开大量数据的支撑。随着5G、物联网等技术的普及,数据的采集、传输和处理能力得到了极大提升。这使得数据驱动的AI技术取得了突破性进展,尤其是在计算机视觉、自然语言处理等领域。1.2深度学习与神经网络的创新深度学习作为AI的核心技术之一,其基于神经网络的算法在近年来得到了快速发展。从LeNet、AlexNet到ResNet,再到GPT、BERT等模
- 深度学习与神经网络Pytorch版 3.2 线性回归从零开始实现 1.生成数据集 2.2. 读取数据集3. 初始化模型参数4. 定义模型5. 定义损失函数6. 定义优化算法7. 训练
砍树+c+v
深度学习神经网络pytorchpython线性回归人工智能
线性回归从零开始实现目录线性回归从零开始实现1.实现步骤1.生成数据集2.读取数据集3.初始化模型参数3.1可视化w和b4.定义模型5.定义损失函数6.定义优化算法7.训练2.完整代码3.小结1.实现步骤我的上一篇文章深度学习与神经网络Pytorch版3.2线性回归从零开始实现1.生成数据集详细讲述了线性回归的原理,步骤,应用场景,优缺点,以及生成数据集这一步骤下面将介绍线性回归从零开始实现的余下
- 人工智能与大数据:技术前沿与实践
吾忆da
人工智能大数据
在当今信息爆炸的时代,人工智能(AI)与大数据已经成为推动社会进步的重要力量。本文将探讨这两项技术的最新发展,以及如何将其应用于实践。一、人工智能:超越人类的智慧人工智能是指计算机系统所具备的智能,使其能够执行与人类智能相似的任务。近年来,随着深度学习和神经网络的崛起,人工智能在语音识别、图像处理、自然语言处理等领域取得了显著突破。1.1深度学习与神经网络深度学习是机器学习的一个子集,通过构建多层
- 深度学习与神经网络Pytorch版 3.2 线性回归从零开始实现 1.生成数据集
砍树+c+v
深度学习神经网络pytorch线性回归人工智能python
3.2线性回归从零开始实现目录3.2线性回归从零开始实现一,简介1.原理2.步骤3.优缺点4.应用场景二,代码展现1.生成数据集(完整代码)2.各个函数解析2.1torch.normal()函数2.2torch.matmul()函数2.3d2l.plt.scatter()函数三,总结一,简介1.原理深度学习线性回归的原理是基于神经网络和线性回归的结合。它使用神经网络来构建一个复杂的非线性模型,同时
- 深度学习与神经网络pytorch版 2.3 线性代数
砍树+c+v
深度学习神经网络pytorch人工智能线性代数
深度学习与神经网络pytorch版2.3线性代数目录深度学习与神经网络pytorch版2.3线性代数1.简介2.线性代数2.3.1标量编辑2.3.2向量2.3.3矩阵2.3.4张量及其性质2.3.5降维2.3.6非降维求和2.3.7点积2.3.8矩阵-向量积2.3.9矩阵-矩阵乘法2.3.10范数3.小结1.简介深度学习与线性代数之间有着密切的联系。线性代数是深度学习算法中用于表达和处理数据的数学
- 深度学习与神经网络pytorch版 基础知识
砍树+c+v
深度学习神经网络pytorch人工智能pythonconda
深度学习与神经网络pytorch版基础知识1.简单介绍PyTorch是一个开源的深度学习框架,由Facebook于2016年发布的第一个开源项目。与TensorFlow等其他深度学习框架相比,PyTorch更加灵活和易于使用,尤其适合快速原型设计和实验。以下是PyTorch的一些主要特点:1.动态计算图:PyTorch使用动态计算图,这意味着您可以在运行时构建和更改计算图。这使得模型开发和调试更加
- 深度学习与神经网络pytorch版 2.2 数据预处理
砍树+c+v
深度学习神经网络pytorch
深度学习与神经网络pytorch版2.2数据预处理目录深度学习与神经网络pytorch版2.2数据预处理2.2.1读取数据集2.2.2处理缺失值2.2.3转换为张量格式小结2.2.1读取数据集#2.2.1读取数据集importosprint('2.2.1读取数据集')os.makedirs(os.path.join('D:\\桌面备份\\学习\\深度学习','data'),exist_ok=Tru
- 深度学习与神经网络实现分类实验
小嘤嘤怪学
深度学习神经网络分类
实验目的掌握神经网络及深度学习建模分析掌握使用神经网络实现分类的方法掌握使用Keras框架实现深度学习的方法了解各分类器之间的差异实验环境操作系统:Windows11应用软件:JupyterNotebook实验内容与结果实验总结神经网络可以有多个隐藏层,每个隐藏层拥有若干个神经元,每层神经元与下一层神经元全连接,同层神经元之间不连接,也不存在跨层神经元连接。值得注意的是,由单个感知器构成的一个简单
- 深度学习与神经网络:制作数据集,完成应用(1)
云时之间
在这一篇文章里,我们将继续上一篇文章的工作,并且在上一篇文章的前提下加入数据集的制作,最终我们将完成这个全连接神经网络的小栗子.先说说我们上一篇文章我们的自制数据集的一切缺点,第一,数据集过于分散,在一个文件夹里读取难免导致内存利用率低,而我们将会使用TensorFlow的tfrecords()函数来讲图片和标签制作成这种二进制文件,这样我们的内存利用率会增加不少.将数据保存为tfrecords文
- 【机器学习】深度学习与神经网络
qq_1532145264
机器学习机器学习深度学习神经网络
1人工神经网络(ArtificialNeuralNetwork,ANN)感知机:激励函数f(·),也称转移函数、传输函数或限幅函数,其作用是将可能的无限域变换到指定的有限范围内进行输出。常用的激励函数:多层感知机:输入层:接收输入信号的层。输出层:产生输出信号的层。中间层称为隐含层,不直接与外部环境打交道。隐含层的层数可从零到若干层。实际情况中,层与层之间可能有部分连接的情况。激励函数应是非线性的
- 毕业设计选题 - 计算机毕业设计(论文)选题合集
weixin_55149953
毕业设计人工智能毕业设计毕设目标跟踪计算机视觉大数据算法
目录前言选题背景意义毕业设计选题深度学习与神经网络计算机视觉与图像处理机器学习与数据挖掘数据分析和大数据处理选题迷茫选题的重要性更多选题指导最后前言大四是整个大学期间最忙碌的时光,一边要忙着准备考研,考公,考教资或者实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。大四的同学马上要开始毕业设计,对选题有疑问可以问学长哦!以下整理了适合不同方向的计算机专业的毕业设计选题对毕设有任何疑问
- 玩转大数据10:深度学习与神经网络在大数据中的应用
沛沛老爹
人工智能数字化转型BigData深度学习神经网络大数据TensorFlowDL4j大规模数据训练
目录1.引言:深度学习和神经网络在大数据中的重要性和应用场景2.深度学习的基本概念和架构3.Java中的深度学习框架3.1.Deeplearning4j框架介绍及Java编程模型3.2.DL4J、Keras和TensorFlow的集成4.大数据与深度学习的结合4.1.大数据与深度学习结合的意义4.2.大数据与深度学习结合的现状4.3.大数据与深度学习结合的未来发展趋势5.深度学习在大数据分析中的具
- 深度学习与神经网络-压缩感知(Compressive Sensing)学习(五)
浮生梦浮生
深度学习与神经网络机器学习人工智能压缩感知高斯矩阵稀疏性相关性
压缩感知(压缩传感,CompressiveSensing)理论是近年来信号处理领域诞生的一种新的信号处理理论,由D.Donoho(美国科学院院士)、E.Candes(Ridgelet,Curvelet创始人)及华裔科学家T.Tao(2006年菲尔兹奖获得者)等人提出,自诞生之日起便极大地吸引了相关研究人员的关注。网站http://dsp.rice.edu/cs上可以获取大量相关的论文。有关压缩感知
- ai技术是怎么换脸的,实现原理是什么,有那些软件
新壳软件
人工智能
人工智能(AI)在近年来的迅猛发展中,带来了许多令人惊叹的技术创新,其中之一就是人工智能换脸技术。这项技术通过深度学习和图像处理的手段,使得用户可以将自己的面孔替换成其他人物,引发了广泛的讨论和应用。本文将深入探讨人工智能换脸技术的实现原理、相关软件以及伦理考量。1.人工智能换脸技术的实现原理1.1深度学习与神经网络人工智能换脸技术的核心是基于深度学习和神经网络的模型。深度学习是一种机器学习的分支
- 【深度学习】吴恩达课程笔记(一)——深度学习概论、神经网络基础
今天有没有吃饱饱
深度学习神经网络人工智能深度学习python1024程序员节
笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~吴恩达课程笔记——深度学习概论、神经网络基础一、概念区别1.深度学习与机器学习2.深度学习与神经网络二、什么是神经网络1.分类2.特点3.工作原理4.神经网络示意图5.神经网络进行监督学习6.深度学习的发展三、神经网络基础1.二分分类(BinaryClassification)2.logistic回归变量定义损失函数(lossfunction)成本
- 深入探究深度学习、神经网络与卷积神经网络以及它们在多个领域中的应用
dvlinker
技术分享系列机器学习深度学习神经网络卷积神经网络参数与权值样本训练计算机视觉
目录1、什么是深度学习?2、深度学习的思想3、深度学习与神经网络4、深度学习训练过程4.1、先使用自下上升非监督学习(就是从底层开始,一层一层的往顶层训练)4.2、后自顶向下的监督学习(就是通过带标签的数据去训练,误差自顶向下传输,对网络进行微调)5、卷积神经网络5.1、卷积神经网络的历史5.2、卷积神经网络的网络结构5.3、关于参数减少与权值共享5.4、一个典型的例子说明5.5、训练过程5.6、
- 【AI】深度学习——人工智能、深度学习与神经网络
AmosTian
AI#深度学习#机器学习人工智能深度学习激活函数神经网络
文章目录0.1如何开发一个AI系统0.2表示学习(特征处理)0.2.1传统特征学习特征选择过滤式包裹式L1L_1L1正则化特征抽取监督的特征学习无监督的特征学习特征工程作用0.2.2语义鸿沟0.2.3表示方式关联0.2.4表示学习对比0.3深度学习0.3.1表示学习与深度学习0.3.2深度学习概念端到端0.3.3深度学习数学表示0.4神经网络0.4.1人脑神经网络神经元机制感觉神经元表征处理神经网
- 神经网络从何而来?
J_晓冉
作者:降晓冉转载自https://zhuanlan.zhihu.com/p/26855333【嵌牛导读】神经网络从何而来?这里说的『从何而来』,并不仅仅是从技术上去介绍一个方法的创造或发展,而更想探讨方法背后所蕴含的思想基础与演变之路。【嵌牛鼻子】神经网络、深度学习【嵌牛提问】神经网络的由来?【嵌牛正文】深度学习与神经网络是近几年来计算机与人工智能领域最炙手可热的话题了。为了蹭这波热度,博主也打算
- 计算机视觉(五)深度学习基础
_企鹅_
计算机视觉计算机视觉深度学习人工智能
文章目录深度学习基础卷积神经网络与传统神经网络区别深度学习与神经网络的区别目标函数选择合适的目标函数Softmax层改进的梯度下降梯度消失的直观解释激活函数学习步长SGD的问题Momentum动量NesterovMomentumAdagradRMSpropAdam各种梯度下降算法比较关于算法选择的建议BatchNormalization的由来避免过适应早期停止训练权重衰减Dropout测试时权重应
- 计算机视觉(四)神经网络与典型的机器学习步骤
_企鹅_
计算机视觉机器学习计算机视觉神经网络
文章目录神经网络生物神经元人工神经元激活函数导数人工神经网络“层”的通俗理解前馈神经网络Delta学习规则前馈神经网络的目标函数梯度下降输出层权重改变量误差方向传播算法误差传播迭代公式简单的BP算例随机梯度下降(SGD)Mini-batchGradientDescent典型的机器学习步骤特征对学习的影响深度学习的特征“连接主义”的兴衰史深度学习与神经网络的区别神经网络神经网络:大量神经元节点按一定
- 深度学习与神经网络
LYRIQ777
深度学习深度学习神经网络人工智能
人工智能,机器学习,深度学习,神经网络,emmmm,傻傻分不清楚,这都啥呀,你知道吗?我不知道。你知道吗?我不知道。来来来,接下来,整硬菜:先解释一下这几个概念:人工智能:人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是新一轮科技革命和产业变革的重要驱动力量。机器学习:一种
- 深度学习与神经网络
@kc++
ComputerVision深度学习神经网络人工智能
文章目录引言1.神经网络1.1什么是神经网络1.2神经元1.3多层神经网络2.激活函数2.1什么是激活函数2.2激活函数的作用2.3常用激活函数解析2.4神经元稀疏3.设计神经网络3.1设计思路3.2对隐含层的感性认识4.深度学习4.1什么是深度学习4.2推理和训练4.3训练的相关概念4.4BP神经网络4.5训练的步骤及涉及的问题4.6损失函数4.7梯度下降算法5.神经网络训练过程实例5.1ste
- 【机器学习】——深度学习与神经网络
柯宝最帅
机器学习深度学习机器学习神经网络
目录引入一、神经网络及其主要算法1、前馈神经网络2、感知器3、三层前馈网络(多层感知器MLP)4、反向传播算法二、深度学习1、自编码算法AutorEncoder2、自组织编码深度网络①栈式AutorEncoder自动编码器②SparseCoding稀疏编码3、卷积神经网络模型(续下次)拓展:引入人工神经网络ANN是由大量处理单位(人工神经元)经广泛互连而组成的人工网络,以模拟脑神经系统的结构与功能
- 低代码崛起:会让程序员饭碗不保,人工智能或成其催化剂
shshshhhhh
人工智能
人工智能技术目前发展的趋势如何关于人工智能技术的评价,大众的评价几乎算是较为一致的,都认为其已成为人类有史以来最具革命性的技术之一。当然了,可能目前的我们还是很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界深度学习与神经网络深度学习和神经网络技术是当前人工智能领域的核心技术,能够实现自动化学习,并在视觉、语音、自然语
- 在武测学习(一):神经网络入门——《Python深度学习》学习笔记
武汉测绘科技大学
学习python深度学习
目录1神经网络入门1.1机器学习、深度学习与神经网络1.1.1机器学习1.1.2深度学习与神经网络1.1.3深度学习的特别之处1.2全连接神经网络1.2.1二分类问题——IMDB中的电影评论1.2.2多分类问题1.2.3标量回归问题1.3用Pytorch实现全连接层1.3.1定义dataset和dataloader1.3.2定义模型类1.3.3训练模型1.4小结大二这一年,身边同学多多少少都开始紧
- 深度学习与神经网络:调用数据集,完成应用(2)
云时之间
在上一篇文章中,我们通过使用mnist上的图片和标签数据来去制作数据集,而今天这一篇文章我们将在反向传播过程中和测试过程中调用数据集.一:反向传播获取文件(mnist_backward.py)先上代码:在这里我们看到,我们和原有的mnist_backward.py中,我们增加了44,54,64行,修改了57行的代码.这几行代码,接下来我们一起分析一下这几行代码:1:image_batch,labe
- 深度学习与神经网络有什么区别
ai智能网络
深度学习神经网络人工智能
深度学习与神经网络有什么区别找深度学习和神经网络的不同点,其实主要的就是:原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是信号->特征->值。特征是由网络自己选择。另外,深度学习作为机器学习的领域中一个新的研究方向,在被引进机器学习后,让机器学习可以更加的接近最初的目标,也就是人工智能。深度学习主要就是对样本数据的内在规律还有表示层次的学习,这些学习过程中获得的信息对诸
- 深度学习与神经网络有什么区别
快乐的小荣荣
人工智能机器学习深度学习
深度学习与神经网络有什么区别找深度学习和神经网络的不同点,其实主要的就是:原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是信号->特征->值。特征是由网络自己选择。另外,深度学习作为机器学习的领域中一个新的研究方向,在被引进机器学习后,让机器学习可以更加的接近最初的目标,也就是人工智能。深度学习主要就是对样本数据的内在规律还有表示层次的学习,这些学习过程中获得的信息对诸
- bp神经网络预测模型原理,BP神经网络预测模型
普通网友
神经网络机器学习人工智能
深度学习与神经网络有什么区别深度学习与神经网络关系2017-01-10最近开始学习深度学习,基本上都是zouxy09博主的文章,写的蛮好,很全面,也会根据自己的思路,做下删减,细化。五、DeepLearning的基本思想假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为:I=>S1=>S2=>…..=>Sn=>O,如果输出O等于输入I,即输入I经过这个系统变化之后
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多