冗余数据方式的来建模,其实用的就是object类型,我们这里又要引入一种新的object类型,nested object类型
博客,评论,做的这种数据模型
PUT /website/blogs/6
{
"title": "花无缺发表的一篇帖子",
"content": "我是花无缺,大家要不要考虑一下投资房产和买股票的事情啊。。。",
"tags": [ "投资", "理财" ],
"comments": [
{
"name": "小鱼儿",
"comment": "什么股票啊?推荐一下呗",
"age": 28,
"stars": 4,
"date": "2016-09-01"
},
{
"name": "黄药师",
"comment": "我喜欢投资房产,风,险大收益也大",
"age": 31,
"stars": 5,
"date": "2016-10-22"
}
]
}
被年龄是28岁的黄药师评论过的博客,搜索
GET /website/blogs/_search
{
"query": {
"bool": {
"must": [
{ "match": { "comments.name": "黄药师" }},
{ "match": { "comments.age": 28 }}
]
}
}
}
{
"took": 102,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 1.8022683,
"hits": [
{
"_index": "website",
"_type": "blogs",
"_id": "6",
"_score": 1.8022683,
"_source": {
"title": "花无缺发表的一篇帖子",
"content": "我是花无缺,大家要不要考虑一下投资房产和买股票的事情啊。。。",
"tags": [
"投资",
"理财"
],
"comments": [
{
"name": "小鱼儿",
"comment": "什么股票啊?推荐一下呗",
"age": 28,
"stars": 4,
"date": "2016-09-01"
},
{
"name": "黄药师",
"comment": "我喜欢投资房产,风,险大收益也大",
"age": 31,
"stars": 5,
"date": "2016-10-22"
}
]
}
}
]
}
}
结果是。。。好像不太对啊???
object类型数据结构的底层存储。。。
{
"title": [ "花无缺", "发表", "一篇", "帖子" ],
"content": [ "我", "是", "花无缺", "大家", "要不要", "考虑", "一下", "投资", "房产", "买", "股票", "事情" ],
"tags": [ "投资", "理财" ],
"comments.name": [ "小鱼儿", "黄药师" ],
"comments.comment": [ "什么", "股票", "推荐", "我", "喜欢", "投资", "房产", "风险", "收益", "大" ],
"comments.age": [ 28, 31 ],
"comments.stars": [ 4, 5 ],
"comments.date": [ 2016-09-01, 2016-10-22 ]
}
object类型底层数据结构,会将一个json数组中的数据,进行扁平化
所以,直接命中了这个document,name=黄药师,age=28,正好符合
修改mapping,将comments的类型从object设置为nested
PUT /website
{
"mappings": {
"blogs": {
"properties": {
"comments": {
"type": "nested",
"properties": {
"name": { "type": "string" },
"comment": { "type": "string" },
"age": { "type": "short" },
"stars": { "type": "short" },
"date": { "type": "date" }
}
}
}
}
}
}
{
"comments.name": [ "小鱼儿" ],
"comments.comment": [ "什么", "股票", "推荐" ],
"comments.age": [ 28 ],
"comments.stars": [ 4 ],
"comments.date": [ 2014-09-01 ]
}
{
"comments.name": [ "黄药师" ],
"comments.comment": [ "我", "喜欢", "投资", "房产", "风险", "收益", "大" ],
"comments.age": [ 31 ],
"comments.stars": [ 5 ],
"comments.date": [ 2014-10-22 ]
}
{
"title": [ "花无缺", "发表", "一篇", "帖子" ],
"body": [ "我", "是", "花无缺", "大家", "要不要", "考虑", "一下", "投资", "房产", "买", "股票", "事情" ],
"tags": [ "投资", "理财" ]
}
再次搜索,成功了。
GET /website/blogs/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"title": "花无缺"
}
},
{
"nested": {
"path": "comments",
"query": {
"bool": {
"must": [
{
"match": {
"comments.name": "黄药师"
}
},
{
"match": {
"comments.age": 28
}
}
]
}
}
}
}
]
}
}
}
score_mode:max,min,avg,none,默认是avg
如果搜索命中了多个nested document,如何讲个多个nested document的分数合并为一个分数
ElasticSearch 笔记
1_ElasticSearch使用term filter来搜索数据
2_ElasticSearch filter执行原理 bitset机制与caching机制
3_ElasticSearch 基于bool组合多个filter条件来搜索数据
4_ElasticSearch 使用terms搜索多个值
5_ElasticSearch 基于range filter来进行范围过滤
6_ElasticSearch 控制全文检索结果的精准度
7_ElasticSearch term+bool实现的multiword搜索原理
8_基于boost的搜索条件权重控制
9_ElasticSearch 多shard场景下relevance score不准确
10_ElasticSearch dis_max实现best fields策略进行多字段搜索
11_ElasticSearch 基于tie_breaker参数优化dis_max搜索效果
12_ElasticSearch multi_match语法实现dis_max+tie_breaker
13_ElasticSearch multi_match+most fiels策略进行multi-field搜索
14_ElasticSearch 使用most_fields策略进行cross-fields search
15_ElasticSearch copy_to定制组合field进行cross-fields搜索
16_ElasticSearch 使用原生cross-fiels 查询
17_ElasticSearch phrase matching搜索
18_ElasticSearch 基于slop参数实现近似匹配
19_ElasticSearch 使用match和近似匹配实现召回率与精准度的平衡
20_ElasticSearch rescoring机制优化近似匹配搜索的性能
21_ElasticSearch 前缀搜索、通配符搜索、正则搜索
22_ElasticSearch 搜索推荐match_phrase_prefix实现search-time
23_ElsaticSearch 搜索推荐ngram分词机制实现index-time更多干货
24_ElasticSearch TF&IDF算法以及向量空间模型
25_ElasticSearch 揭秘lucene的相关度分数算法
26_ElasticSearch 四种常见的相关度分数优化方法
27_ElasticSearch用function_score自定义相关度分数算法
28_ElasticSearch误拼写时的fuzzy模糊搜索技术
29_ElasticSearchIK中文分词器的安装和使用
30_ElasticSearch IK分词器配置文件 以及自定义词库
ElasticSearchIK中文分词器的安装和使用
日志管理ELK