- SLAM源码分析(八)
wang_yq0728
1024程序员节slam
[email protected],ComputeH21函数,用DLT方法求解单应矩阵H。vP1:参考帧中归一化后的特征点;vP2:当前帧中归一化后的特征点;基本原理:|x'||h1h2h3||x||y'|=a|h4h5h6||y|简写:x'=aHx,a为一个尺度因子1||h7h8h9||1|使用DLT(directlineartranform)求解该模型x'=aHx--->(x
- ORB-SLAM2源码逐行解析系列(二):追踪线程
LDST_CSDN
计算机视觉人工智能自动驾驶
1.Tracking类(1)Tracking类的定义///Examples/Monocular/include/Tracking.hclassTracking{public:/***@brief构造函数**@param[in]pSys系统实例*@param[in]pVoc字典指针*@param[in]pFrameDrawer帧绘制器*@param[in]pMapDrawer地图绘制器*@param
- ORB-SLAM2源码学习:Initializer.cc⑨: Initializer::FindHomography找到最好的单应矩阵H
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉opencvubuntu人工智能矩阵学习
前言该函数功能的实现依赖于之前学习的三个函数特征点的坐标归一化、计算单应矩阵H以及它的评分函数。ORB-SLAM2源码学习:Initializer.cc②:Initializer::Normalize坐标归一化-CSDN博客ORB-SLAM2源码学习:Initializer.cc③:Initializer::ComputeH21计算单应矩阵-CSDN博客ORB-SLAM2源码学习:Initiali
- ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉人工智能ubuntu学习矩阵线性代数
前言这部分函数的实现依赖于之前学习的的检查三角化结果的函数:ORB-SLAM2源码学习:Initializer.cc⑧:Initializer::CheckRT检验三角化结果-CSDN博客这里通过基础矩阵F来恢复位姿和三维点实际上是借助本质矩阵来进行的,相对于用单应矩阵H恢复位姿和三维点来说,它的解的结构较为简单其解的讨论形式也是比较简单的。1.函数声明boolInitializer::Recon
- ORB-SLAM2源码学习:Initializer.cc(11): Initializer::ReconstructH用H矩阵恢复R, t和三维点
PaLu-LvL
计算机视觉#ORB-SLAM2#初始化c++计算机视觉ubuntu人工智能矩阵学习
前言这个函数的实现依赖于之前学习的检验三角化结果的函数:ORB-SLAM2源码学习:Initializer.cc⑧:Initializer::CheckRT检验三角化结果-CSDN博客位姿可能有多组解,到底哪个才是真正的解呢?方法是实践出真知。根据相应的论文我们分两种情况分别恢复出不同的解,最后得到一个最好的。每种可能的解都需要重复计算一次,最终根据如下条件选择最佳的解:1.最优解成功三角化点数目
- AWS微服务示例项目指南
缪玺彬
AWS微服务示例项目指南aws-microservicesAWSServerlessEvent-drivenMicroserviceswithusingAWSLambda,AWSDynamoDB,AWSAPIGateway,AWSEventBridge,AWSSQS,AWSCDKstandsforCloudDevelopmentKitforIaC—InfrastructureasCodetoola
- 点云从入门到精通技术详解100篇-基于卷积和注意力机制的3D点云特征提取
格图素书
3d
目录知识储备点云获取技术分类一、图像衍生点云二、LiDAR三、RGB-D深度图像传感器基于3D激光slam的点云特征提取为什么要进行点云特征提取特征提取理论与代码编写点云特征提取主体类sample_and_groupfarthest_point_samplequery_ball_pointindex_points前言国内外研究现状卷积神经网络三维卷积神经网络稀疏卷积[21]基于3D点云数据的目标分
- 学习笔记之——3DGS-SLAM系列代码解读
gwpscut
3DGaussianSplatting(3DGS)3DGS深度学习三维重建计算机视觉3d
最近对一系列基于3DGaussianSplatting(3DGS)SLAM的工作的源码进行了测试与解读。为此写下本博客mark一下所有的源码解读以及对应的代码配置与测试记录~其中工作1~5的原理解读见博客:学习笔记之——3DGaussianSplatting及其在SLAM与自动驾驶上的应用调研_3dgaussiansplattingslam-CSDN博客文章浏览阅读5.3k次,点赞53次,收藏92
- 【MotionCap】DROID-SLAM 1 :介绍及安装
等风来不如迎风去
AI入门与实战人工智能SLAHMRDROID-SLAM
DROID-SLAM:DROID-SLAM:DeepVisualSLAMforMonocularDROID-SLAM:适用于单目、立体和RGB-D相机的深度视觉SLAMStereo,andRGB-DCamerashttps://arxiv.org/abs/2108.10869DROID-SLAM:DeepVisualSLAMforMonocular,Stereo,andRGB-DCamerasfi
- VYOS容器运行Uptime Kuma监控
GTaylor
Vyosvyos容器UptimeKuma监控系统无处不容器
添加镜像addcontainerimagelouislam/uptime-kumasudomkdir/config/kumasudochmod777/config/kuma配置setcontainernameUptimeKumadescription'Uptime-Kuma'setcontainernameUptimeKumaimage'docker.io/louislam/uptime-kuma
- 【ORB-SLAM2:九、BA优化】
KeyPan
ORB-SLAM2人工智能计算机视觉机器学习深度学习算法
BA(BundleAdjustment)是SLAM系统中优化位姿和地图点位置的重要技术。通过最小化图结构中的重投影误差,BA在提高地图精度和轨迹优化方面发挥了核心作用。本章将围绕BA优化展开,从图优化工具简介到优化函数分类,再到具体的局部BA和Sim3优化边的解析进行详细阐述。9.1图优化和g2o简介9.1.1图优化的基本概念图优化图优化将SLAM问题建模为一个图结构:节点(Vertices):代
- 【ORB-SLAM2:三、 地图初始化】
KeyPan
ORB-SLAM2数码相机计算机视觉人工智能机器学习深度学习算法
地图初始化是视觉SLAM系统的关键步骤之一,它是整个系统运行的起点。初始化的主要任务是从输入图像数据中构建一个初始地图,为后续的相机位姿估计和场景重建提供基础。无论是单目、双目还是RGB-D相机,地图初始化的结果直接决定了系统的鲁棒性和精度。3.1为什么需要地图初始化3.1.1地图初始化的重要性定义初始参考坐标系地图初始化为SLAM系统提供了一个全局参考坐标系,使后续的位姿估计和地图扩展能够在一致
- ORB-SLAM2:四、 地图点、关键帧、图结构】
KeyPan
ORB-SLAM2计算机视觉人工智能机器学习深度学习算法
地图点、关键帧和图结构是ORB-SLAM系统的核心组成部分,它们共同构建了SLAM系统的空间表示与数据组织方式。本章将详细讨论这些模块及其在系统中的作用和实现方式。4.1地图点4.1.1什么是地图点地图点(MapPoint)是SLAM系统中用来表示环境中三维特征点的抽象概念。这些点是通过相机观测和三角测量得到的,是地图构建的基础。三维位置每个地图点存储其在世界坐标系中的三维坐标P(X,Y,Z)P(
- 【视觉SLAM:六、视觉里程计Ⅰ:特征点法】
KeyPan
视觉SLAM计算机视觉人工智能机器学习数码相机算法深度学习
视觉里程计(VisualOdometry,VO)是通过处理图像序列,估计摄像头在时间上的相对位姿变化的技术。它是视觉SLAM的重要组成部分之一,主要通过提取图像中的信息(如特征点或直接像素强度)来实现相机运动估计。以下从特征点法、2D-2D对极几何、三角测量、3D-2D的PnP方法、3D-3D的ICP方法介绍视觉里程计的核心内容。特征点法特征点法是视觉里程计的经典方法,通过提取图像中的显著特征点,
- 通俗易懂 serverless 架构、微服务架构和云原生架构,并简单代码
Ai君臣
架构架构云原生serverless
文章目录1serverless架构、微服务架构和云原生架构区别1.Serverless架构示例:AWSLambda+APIGateway2.微服务架构示例:Flask微服务3.云原生架构示例:Docker和Kubernetes2Kubernetes中管理多个副本和流量两个关键组件1.Deployment2.Service负载均衡流量管理1serverless架构、微服务架构和云原生架构区别别用代码
- 【视觉惯性SLAM:十五、ORB-SLAM3中的IMU预积分】
KeyPan
视觉惯性SLAM计算机视觉视觉检测
15.1视觉惯性紧耦合15.1.1视觉惯性紧耦合的重要性视觉惯性紧耦合(Visual-InertialTightCoupling)在ORB-SLAM3中的作用不可替代,是实现高鲁棒性和高精度定位的核心技术。单一的视觉SLAM主要依赖于图像特征进行定位和建图,这种方法虽然能够在许多环境中获得良好的效果,但其鲁棒性容易受到动态变化、光照条件恶化以及环境特征稀缺等因素的限制。例如,昏暗场景或快速运动可能
- VSLAM技术实现机器人在不同场景下的精准导航、避障
向阳而生|X
自主导航python计算机视觉
链接:https://developer.orbbec.com.cn/forum_plate_module_details.html?id=998
- 视觉SLAM学习打卡【8-1】-视觉里程计·直接法
肝帝永垂不朽
#SLAM计算机视觉opencvc++
本节直接法与上节特征点法,为视觉里程计估计位姿的两大主流方法。而在引出直接法前,先介绍光流法(二者均对灰度值I做文章)。至此,前端VO总算结束了。学下来一个感受就是前几章的数学基础很重要,尤其是构建最小二乘的非线性优化(BA),几乎每种方法都有其一席之地。视觉SLAM学习打卡【8-1】-视觉里程计·直接法一、光流法(1)前提(实际中较难满足)(2)理论推导(3)附:超定方程求解二、直接法(1)理论
- 从零开始搭二维激光SLAM --- 序章
李太白lx
从零开始搭二维激光SLAMSLAM
为什么要做这个开源项目1我的SLAM接触史1.1硕士阶段从17年3月开始接触SLAM,到现在已经3年了。虽然时间很长,但并不是所有时间都在单纯的搞SLAM。17年3月,研一下学期的时候选的课题题目,基于SLAM的室内移动机器人导航技术研究。之前并没有接触过SLAM,ROS等等。就连c++都是16年研一上学期的时候学的(大一学过以后没再接触过)。从17年3月开始学ROS,开始了解SLAM,还看了概率
- 导致格式错误的 Lambda 代理响应的原因以及如何修复它
zqhdz米时空
汇编
当人们尝试使用AWSAPIGateway和AWSLambda构建无服务器应用程序时,经常出现的一个问题是_由于配置错误而执行失败:Lambda代理响应格式错误。_没有什么比通用错误消息更糟糕的了,它们不会告诉您解决问题所需的任何内容,对吧?AWS并不是以其错误消息设计而闻名,如果甚至可以这样称呼它的话,更不用说为您提供解决问题的方法了。那么如何修复这个Lambda错误以及是什么原因造成的呢?花椒壳
- ROS yaml参数文件的使用
Sun Shiteng
ROS
举个例子,若在params.yaml文件中定义如下参数LidarImageFusion:points_src:"/hilbert_h/deskew/cloud_info"image_src:"/usb_cam0/image_raw"camera_info_src:"/home/hdj/fusion_slam/Color_SLAM_ws/src/hilbert_h/config/firefly_8s
- xwiki html和css,MediaWiki vs. XWiki
Ake阿科
多语言信息技术编程数据库操作系统
140Afar,Abkhazian,Afrikaans,Amharic,Arabic,Assamese,Aymara,Azerbaijani,Bashkir,Byelorussian,Bulgarian,Bihari,Bislama,Bengali;Bangla,Tibetan,Breton,Catalan,Corsican,Czech,Welsh,Danish,German,Bhutani,Gr
- 2021-07-07
潇洒二爷
一辆特斯拉“花格子S型”小车,突然起火,电子技术的车门也失灵TeslaModelSPlaidbrokeintofirewithfailureofelctronicdoors一辆“花格子牌”(ModelSPlaid)特斯拉轿车,在6月29日这天,车主正在路上行驶,突然烈焰腾飞,他的代理律师说,他被短时间困在车内,因为几个电动门都打不开。事情在几天前发生于费城外,这名男子拿到这款特斯拉之后,号称是世界
- 力扣刷题记录(一)剑指Offer(第二版)
乘凉~
求职过程记录leetcode链表算法
1、本栏用来记录社招找工作过程中的内容,包括基础知识学习以及面试问题的记录等,以便于后续个人回顾学习;暂时只有2023年3月份,第一次社招找工作的过程;2、个人经历:研究生期间课题是SLAM在无人机上的应用,有接触SLAM、Linux、ROS、C/C++、DJIOSDK等;3、参加工作后(2021-2023年)岗位是嵌入式软件开发,主要是服务器开发,Linux、C/C++、网络编程、docker容
- 论文笔记—NDT-Transformer: Large-Scale 3D Point Cloud Localization using the Normal Distribution Transfor
入门打工人
笔记slam定位算法
论文笔记—NDT-Transformer:Large-Scale3DPointCloudLocalizationusingtheNormalDistributionTransformRepresentation文章摘要~~~~~~~在GPS挑战的环境中,自动驾驶对基于3D点云的地点识别有很高的要求,并且是基于激光雷达的SLAM系统的重要组成部分(即闭环检测)。本文提出了一种名为NDT-Transf
- 深度学习特征提取魔改版太强了!发文香饽饽!
深度之眼
深度学习干货人工智能干货人工智能深度学习机器学习论文特征提取
要说CV领域经久不衰的研究热点,特征提取可以占一席,毕竟SLAM、三维重建等重要应用的底层都离不开它。再加上近几年深度学习兴起,用深度学习做特征提取逐渐成了主流,比传统算法无论是性能、准确性还是效率都更胜一筹。目前比较常见的深度学习特征提取方法有基于transformer、基于CNN、基于LSTM以及基于GAN,都发展的比较成熟。但为了追求更快速、准确、鲁棒的特征点提取,研究者们开始致力于改进深度
- 视觉SLAM十四讲学习笔记——第十讲 后端优化(2)
晒月光12138
视觉SLAM十四讲学习笔记slamubuntu
上文提到考虑全局的后端优化计算量非常大,因此在计算增量方程时,借助H矩阵的稀疏性加速运算。但是随着时间的推移,累积的相机位姿和路标数量还是会导致计算量过大,以上一节的示例代码数据为例:16张图像,共提取到22106个特征点,这些特征点共出现了83718次。对于一个20Hz更新速度,上述的数据量甚至还不到1s的内容,因此在求解大规模定位建图问题时,一定要控制BA的规模。这里主要有两种解决思路:(1)
- 《Java基础知识》Java Lambda表达式
Limingmingaa
javajava开发语言蓝桥杯
接触Lambda表达式的时候,第一感觉就是,这个是啥?我居然看不懂,于是开始寻找资料,必须弄懂它。先来看一个案例:@FunctionalInterfacepublicinterfaceMyLamda{voidtest1(Stringy);}importdemo.knowledgepoints.Lambda.inf.MyLamda;publicclassLambdaTest{publicsta
- NDT算法
Joeybee
SLAM算法
上一次我们学习了高翔《自动驾驶与机器人中的SLAM技术》中的三维ICP算法,其中包括点对点、点对线、点对面的ICP算法,本次博客学习NDT算法的源码。NDT算法与ICP算法的最大不同之处,在我看来是NDT考虑了均值和方差这两个局部统计量。从最后的求解方法来看,NDT采用了加权最小二乘问题的高斯-牛顿法,和ICP算法的最明显区别是多了权重分布。从高翔书中的测试结果来看,NDT的收敛速度稍弱于点对面I
- SLAM中常用的库
wq_151
人工智能SLAM计算机视觉人工智能机器学习slam
SLAM中常用的库关于库关于库Pangolin是一个用于OpenGL显示/交互以及视频输入的一个轻量级、快速开发库,下面是Pangolin的Github网址:githubEigen是一个高层次的C++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。pagenanoflann是一个c++11标准库,用于构建具有不同拓扑(R2,R3(点云),SO(2)和SO(3)(2D和3D旋转组))的
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
 
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option