- PSINS工具箱函数介绍——ggnss(ggpsvars+gbdvars+gglovars)
MATLAB卡尔曼
PSINS函数matlabPSINS
文章目录关于工具箱工具箱概述学习路径指南GNSS参数初始化函数`ggnss`函数功能参数体系结构典型应用场景系统参数初始化操作指南执行流程运行结果解析函数源码深度解析代码架构扩展开发建议关于工具箱kfinit是kf的参数初始化函数,用于初始化滤波参数本文所述的代码需要基于PSINS工具箱,工具箱的讲解:PSINS初学指导:https://blog.csdn.net/callmeup/article
- 腿足机器人之五- 粒子滤波
shichaog
腿足机器人机器人
腿足机器人之五粒子滤波直方图滤波粒子滤波上一篇博客使用的是高斯分布结合贝叶斯准则来估计机器人状态,本篇是基于直方图和粒子滤波器这两种无参滤波器估计机器人状态。直方图方法将状态空间分解成有限多个区域,并用直方图表示后验概率。直方图为每个区域分配一个单独的累积概率;可以将其视为对连续密度函数的逐段常数近似。第二种技术通过有限多个样本来表示后验概率。由此产生的滤波器被称为粒子滤波器,在某些机器人问题中获
- 芯麦GC1808立体声ADC芯片解析:高性价比与全集成音频采集方案
青牛科技-Allen
GLOBALCHIP音视频单片机嵌入式硬件收录机人工智能家用电器
引言在直播设备、智能语音终端等新兴应用的推动下,高性能音频采集系统的需求持续增长。芯麦半导体推出的GC1808立体声音频模数转换器,凭借其全集成信号链设计和灵活的接口配置,为开发者提供了高性价比的音频前端解决方案。本文将从核心架构、关键技术特性及典型应用场景三个方面,深入解析这款芯片的设计亮点。一、GC1808核心特性概览全集成信号链内置64倍过采样率Δ-Σ调制器集成数字梳状滤波器(CombFil
- 【AI中数学-信号处理】信号的清道夫:精通信号过滤技巧
云博士的AI课堂
AI中的数学人工智能信号处理高频去噪带通滤波滤波处理信号过滤机器学习
第3节信号的清道夫:精通信号过滤技巧在信号处理中,过滤技术是一项至关重要的工具。通过对信号的处理与过滤,我们能够去除不必要的成分,如噪声、干扰等,从而提高信号质量,增强其后续处理效果。在本节中,我们将介绍三种实际应用中常用的精通信号过滤技巧,包括基于小波变换的信号分离、带通滤波在心电图分析中的应用,以及图像中的高频噪声去除技术。通过这些案例,我们将深入探讨信号过滤在不同领域中的应用。案例1:基于小
- OpenCV的卡尔曼滤波器:实现和应用
雪域Code
opencv人工智能计算机视觉C/C++
OpenCV的卡尔曼滤波器:实现和应用卡尔曼滤波器(Kalmanfilter)是一种最优估计的算法,在众多领域有着广泛的应用,如控制系统、通信系统、机器人等。OpenCV作为一个计算机视觉库,也提供了对卡尔曼滤波器的支持。本文将介绍OpenCV中卡尔曼滤波器的基本原理、实现方法以及在图像处理中的应用。一、卡尔曼滤波器简介卡尔曼滤波器是一种用于状态估计和信号滤波的算法,主要针对线性、高斯分布的系统。
- 直流稳压电源
alone_l
硬件电路嵌入式硬件
小功率直流稳压电源一般由变压、整流、滤波和稳压四个环节组成。电源变压器:通常为降压变压器,将交流电网电压变为合适的交流电压,副边电压的有效值取决于后面的电路或电子设备的需要;整流电路:利用整流元件的单向导电性,将交流电压变为脉动的直流电压。此时的电压有很大的脉动成分,还需要滤波和稳压环节才能变为理想的直流电压;滤波电路:通常由电容、电感等储能元件组成,目的是滤除整流后电压中的交流脉动成分,使输出电
- 利用cuda加速图像处理—实现sobel边缘检测
我不会打代码啊啊
cuda编程图像处理计算机视觉opencvc++gpu算力
利用cuda加速图像处理—实现sobel边缘检测#include#include#includeusingnamespacecv;/***@brief对图像进行Sobel滤波*@paraminput输入图像*@paramoutput输出图像*@paramwidth图像宽度*@paramheight图像高度*@returnvoid*@note该函数使用CUDA进行加速*@note该函数使用Sobel
- 基于图像处理的裂缝宽度检测系统-matlab
人工智能专属驿站
计算机视觉图像处理人工智能
图像处理技术广泛地应用于桥梁、房屋、道路等工程施工中出现的表面裂缝,利用数字图像处理技术来测量结构物表面裂缝宽度是一种无损检测方法.基于图像处理的裂缝宽度检测系统需采用的图像处理算法有:(1)读取裂缝图像;(2)图像转化为灰度图像;(3)图像的增强;(4)平滑滤波;(5)阈值分割;(6)形态学去噪;(7)边缘检测(Canny算子);(8)边缘坐标点的提取;结果见:源程序见:基于图像处理的裂缝宽度检
- Python 爬虫验证码识别
acheding
pythonpython爬虫ocr
在我们进行爬虫的过程中,经常会碰到有些网站会时不时弹出来验证码识别。我们该如何解决呢?这里分享2种我尝试过的方法。0.验证码示例1.OpenCV+pytesseract使用Python中的OpenCV库进行图像预处理(边缘保留滤波、灰度化、二值化、形态学操作和逻辑运算),然后结合pytesseract进行文字识别。pytesseract需要配合安装在本地的tesseract-ocr.exe文件一起
- opencv全面详解教程
听忆.
机器学习深度学习计算机视觉人工智能
opencv全面详解教程1.OpenCV简介2.安装OpenCV2.1使用pip安装(适用于Python)2.2通过conda安装2.3从源码编译(高级)3.OpenCV基本操作3.1读取和显示图像3.2保存图像3.3视频处理4.图像处理操作4.1调整大小和裁剪4.2颜色空间转换4.3图像平滑(滤波)4.4边缘检测5.形态学操作6.特征检测与匹配6.1角点检测(Harris)6.2SIFT、SUR
- Qt中事件过滤器eventFilter,按键事件传递顺序。
hope-feng
EventFilterkeyPressEventc++qt5事件处理机制按键事件
滤波器eventFilterthis->eventFilter(this)chuildclass->eventFilter(this)查阅Qt帮助手册中的EventFilter函数得到:Inyourreimplementationofthisfunction,ifyouwanttofiltertheeventout,i.e.stopitbeinghandledfurther,returntrue;
- 【课题推荐】基于自适应滤波技术的多传感器融合在无人机组合导航中的应用研究
MATLAB卡尔曼
课题推荐与讲解无人机
无人机组合导航系统在现代航空、农业、监测等领域的应用越来越广泛。为了提高导航精度,通常采用多传感器融合技术,将来自不同传感器的数据(如GPS、惯性测量单元(IMU)、磁力计等)进行整合。然而,传感器的量测偏差、环境干扰以及非线性特性使得多传感器融合面临诸多挑战。因此,开发一种自适应的多传感器融合方法,能够有效应对这些问题,对无人机导航系统的性能提升至关重要。文章目录研究目标创新点研究方法实现示例M
- 计算四个锚点TOA定位中GDOP的详细步骤和MATLAB例程
MATLAB卡尔曼
MATLAB定位程序与详解matlab开发语言
该MATLAB代码演示了在三维空间中,使用四个锚点的TOA(到达时间)定位技术计算几何精度衰减因子(GDOP)的过程。如需帮助,或有导航、定位滤波相关的代码定制需求,请联系作者文章目录DOP计算原理MATLAB例程运行结果示例关键点说明扩展方向另有文章:多锚点Wi-Fi定位和基站选择方法,基于GDOP、基站距离等因素DOP计算原理GDOP(几何精度衰减因子)用于评估定位系统中锚点几何分布对定位精度
- 有哪些滤波,原理是什么,分别在什么时候用
高力士等十万人
OpenCV计算机视觉图像处理opencvpython
均值滤波(AverageFiltering)原理:通过计算像素点邻域内像素值的平均值来作为该像素点滤波后的新值。例如,对于一个3x3的邻域,将9个像素值相加然后除以9得到滤波后的像素值。优点:简单易实现,能够对信号或图像进行一定程度的平滑处理,降低噪声的影响。应用场景:适用于对精度要求不高的图像或信号平滑场景,如视频监控中的简单图像预处理。中值滤波(MedianFiltering)原理:对于一个给
- 在Simulink中建立基于高压直流输电的模块化多电平逆变器仿真模型
xiaoheshang_123
人工智能网络linux
目录基于Simulink的高压直流输电下的模块化多电平逆变器建模仿真1.背景介绍1.1项目背景1.2系统描述1.3应用场景2.具体的仿真建模过程2.1系统模型构建2.1.1子模块模型2.1.2MMC主电路模型2.1.3控制器模型2.1.4滤波器模型2.2连接各模块2.3添加输出显示3.仿真设置与运行3.1设置仿真参数3.2运行仿真3.3分析仿真结果4.结果分析与讨论4.1结果分析4.2讨论5.示例
- WebP2P+自研回音消除:视频通话SDK嵌入式EasyRTC构建高交互性音视频应用
Likeadust
音视频p2pWebP2Pwebrtc
随着移动互联网时代的到来,手机端的扬声器大多采用外置设计,且音量较大。在这种情况下,扬声器播放的声音更容易被麦克风捕捉,从而导致回声问题显著加剧。这种设计虽然方便用户在免提模式下使用,但也带来了更复杂的音频处理挑战。回音消除算法的核心在于从麦克风采集的混合信号中分离出原始语音信号和回声信号,并将回声信号从混合信号中移除。EasyRTC采用的自研算法基于以下几种技术:自适应滤波器:通过实时调整滤波器
- 3.Halcon3D点云滤波-降采样/去除离群点/直通滤波/平滑计算/凸包计算
黄晓魚
halcon3dPCL点云处理深度神经网络3d
对点云进行滤波的主要意义和目的有以下几点:去除噪声和异常值:由于设备本身的误差或环境因素的影响,采集到的点云数据中可能会包含一些噪声和异常值。这些噪声和异常值会影响后续的点云处理和分析,因此需要通过滤波处理加以去除。提高数据质量:滤波处理可以有效地提高点云数据的质量和精度,使得点云数据更加准确和可靠。这对于后续的点云处理和分析具有重要的意义。局部计算与调整:点云滤波主要通过局部计算的方式,获得一个
- Halcon 维测量: 点云数据处理与断线拟合
QfcaLinux
点云
在三维视觉领域,点云数据处理是一项重要的任务。本文将介绍如何使用Halcon来进行点云图转深度图、点云滤波以及断线拟合等维测量操作。我们将通过详细的代码示例来说明每个步骤的实现方法。点云图转深度图:点云图转深度图是将一个由三维点坐标组成的点云数据转换为二维深度图的过程。这对于后续的形状分析和特征提取等任务非常有用。下面是使用Halcon实现点云图转深度图的代码示例:create_scene3d_f
- 中值十字形滤波 matlab,Opencv+python:中值滤波十字形窗口
夏小龙
中值十字形滤波matlab
前言在进行图像空域处理时,对于椒盐噪声的图像,中值滤波是一个很不错的选择,一般来说mask有矩形椭形和十字形,十字形被认为在处理含有少数尖锥基元的图像更能保证尖锥的形状,由于没找到Matlab自带的函数库实现十字窗口,并且论坛上有极少的Opencv基于python的代码,大多还是付费的,于是自己写了一个模板,能够实现基本原理,至于效果和处理速度,有时间以后会进行优化。中值滤波中值滤波的原理很简单,
- python+OpenCv笔记(十一):中值滤波
ReadyGo!!!
OpenCV(Python)opencvpython计算机视觉
中值滤波:原理:中值滤波是一种典型的非线性滤波技术,基本思想是用像素点邻域灰度值的中值来代替该像素点的灰度值。应用:中值滤波对椒盐噪声来说尤其有用,因为它不依赖于邻域内那些与典型值差别很大的值。OpenCvAPI:cv2.medianBlur(src,ksize)参数:src:输入的图像ksize:卷积核的大小代码编写:importnumpyasnpimportcv2ascvimportrando
- opencv 中值滤波
菩提本无树007
opencv计算机视觉人工智能
中值滤波是一种常用的图像滤波算法,是在像素点周围进行多个点的中值滤波,将点的灰度值根据其周围像素点的灰度值进行平均,并使这些点的灰度值具有相似性,以达到平滑去噪的目的。中值滤波在图像处理中应用广泛,在图像滤波和图像增强处理中得到了广泛应用。中值滤波的原理如下:(1)中值滤波是一种通过计算灰度图像各像素灰度值的均值来实现去噪的算法。它采用灰度均值来代替灰度方差,在保证灰度图像的基本信息不变的同时,滤
- 【python opencv】中值滤波
人才程序员
PythonOpencv视觉处理opencvpython计算机视觉python3.11人工智能开发语言qt
文章目录中值滤波通俗易懂的介绍简单解释:学术概念数学描述示例代码1.**中值滤波的实现**2.**中值滤波去噪**3.**调整中值滤波窗口大小**4.**自定义中值滤波器**总结中值滤波通俗易懂的介绍中值滤波(MedianFiltering)是一种常用于图像去噪的技术。它的核心思想是在图像的每个像素周围选择一个窗口,然后用这个窗口内所有像素的中值替换当前像素的值。中值滤波特别有效于去除“椒盐噪声”
- JavaCV进阶opencv图像处理:扫描并识别视频中的二维码
eguid_1
#JavaCV进阶之opencvJavaCV图像处理合集扫描视频二维码opencv识别二维码javacv检测二维码java扫描检测二维码识别二维码
人脸检测识别javacv进阶opencv图像检测/识别系列目录人脸检测识别JavaCV进阶opencv图像处理:摄像头图像人脸检测JavaCV进阶opencv图像处理:ffmpeg视频图像画面人脸检测JavaCV进阶opencv图像处理:批量人脸图像分类训练JavaCV进阶opencv图像处理:摄像头图像人脸识别二维码识别二维码识别JavaCV进阶opencv图像处理:扫描并识别摄像头中的二维码
- 加速度计信号处理
妄想出头的工业炼药师
信号处理
【使用DSP滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)_加速度计滤波器-CSDN博客https://wenku.baidu.com/view/622d38b90f22590102020740be1e650e52eacff9.html?_wkts_=1738906719916&bdQuery=%E5%8A%A0%E9%80%9F%E5%BA
- 数字滤波器的分类
膝盖中箭-_-#
数字滤波器
数字滤波器可以根据不同的标准进行分类,以下是几种常见的分类方式:1.按实现结构分类FIR滤波器(有限脉冲响应滤波器)-特点:系统的脉冲响应在有限时间内衰减到零。-优点:线性相位特性(保证信号不失真),稳定性高。-缺点:实现相同性能时,阶数通常较高,计算量较大。IIR滤波器(无限脉冲响应滤波器)-特点:系统的脉冲响应在理论上无限延续。-优点:实现相同性能时,阶数较低,计算效率高。-缺点:非线性相位特
- Django中ORM框架的使用
jyr2014
数据库django
1.ORM框架介绍ORM(ObjectRelationalMapping)框架采用元数据来描述对象与关系映射的细节,元数据一般采用XML格式,并且存放在专门的对象--映射文件中。2.ORM框架与数据库的关系在Django中ORM框架需要通过model实现数据的crud操作,同时,需要在虚拟环境中构建pymysql或是mysqlclient来构建第三方框架,以此来达到操作数据库的目的。
- YOLOv8改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题
Limiiiing
YOLOv8改进专栏YOLO深度学习计算机视觉目标检测
一、本文介绍本文主要利用FreqFusion结构改进YOLOv8的目标检测网络模型。FreqFusion结构针对传统特征融合在密集图像预测中存在的问题,创新性地引入自适应低通滤波器生成器、偏移量生成器和自适应高通滤波器生成器。将FreqFusion应用于YOLOv8的改进过程中,能够使模型在处理复杂场景图像时,更精准地聚焦目标物体边界,减少背景噪声干扰,显著强化目标物体边界特征表达,进而提升模型在
- 【基于PSINS】CKF滤波,观测量为航向角、位置、速度(共7维),附完整代码
MATLAB卡尔曼
基于PSINS工具箱的程序设计matlab开发语言
本代码基于PSINS工具箱实现了一个15维状态的容积卡尔曼滤波(CKF)算法,用于SINS/GPS组合导航系统。该算法在原有仅速度观测的CKF153模型基础上改进,新增位置、航向角作为观测输入,提升了导航精度。文章目录运行结果完整代码核心功能代码改进点实现流程关键函数说明运行结果总结以下是代码的核心功能与实现流程:运行结果三维轨迹:三轴位置误差曲线:三轴速度误差曲线:
- 二阶RC滤波器截止频率计算
LaoZhangGong123
产品研发经验分享二阶滤波器滤波器电路分析模电
f_c=1/(2∗π∗√(R1∗R2∗C1*C2)),其中R1、R2为电阻,C1,C2为电容。在某些设计中,为了简化设计和实现相等的Q值,可以令R1∗C1=R2∗C2,这时截止频率简化为f_c=1/(2∗π∗R1*C1)当R1=4.7K,C1=1000p,R2=47K,C2=100p,则f_c=1/(6.28*4700*1000/1000000000000)=33879Hz=33.879KHz当R
- E4982A,keysight是德科技台式LCR表
tan_13510075188
科技信息与通信测试工具网络
是德科技keysightE4982A台式LCR表是德KEYSIGHT的精密型LCR表E4982A,针对SMD电感器、EMI滤波器等无源元器件的制造测试展现出卓越性能,特别适用于1MHz至3GHz高频率范围内的阻抗测试。此外,E4982A还广泛应用于研发领域,凭借其强大的功能特性(如列表测量)确保产品质量。E4982A精密型LCR表概览E4982ALCR表在高频率(1MHz~3GHz)下为无源元器件
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>