[官方总结] tensorboardX 使用教程

tensorboardX api手册& 简单教程(看着像官方发布的):

https://tensorboardx.readthedocs.io/en/latest/tutorial.html

tensorboardX github地址:

https://github.com/lanpa/tensorboardX

 

这个东西非常简单,很多网友的博客对初学者不利,加了自己的东西,致使简单上手的tensorboardx变得困难。

下面搬运github readme 部分(请务必多看几遍,官方说明,没有比它更合适的学习途径


用简单的函数调用写TensorBoard事件。

  • 支持scalarimagefigurehistogramaudiotextgraphonnx_graphembeddingpr_curve 和video摘要。

  • 要求demo_graph.pytensorboardX> = 1.2和pytorch> = 0.4

  • 常问问题

安装

在anaconda2 / anaconda3上测试,PyTorch 1.0.0 / torchvision 0.2.1 / tensorboard 1.12.0

pip install tensorboardX

或者从源代码构建:

git clone https://github.com/lanpa/tensorboardX && cd tensorboardX && python setup.py install

Example

  • Run the demo script: python examples/demo.py
  • Use TensorBoard with tensorboard --logdir runs (needs to install TensorFlow)
# demo.py

import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter

resnet18 = models.resnet18(False)
# 注意,在这存储路径
writer = SummaryWriter("./data")
sample_rate = 44100
freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]

for n_iter in range(100):

    dummy_s1 = torch.rand(1)
    dummy_s2 = torch.rand(1)
    # data grouping by `slash`
    writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
    writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)

    writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),
                                             'xcosx': n_iter * np.cos(n_iter),
                                             'arctanx': np.arctan(n_iter)}, n_iter)

    dummy_img = torch.rand(32, 3, 64, 64)  # output from network
    if n_iter % 10 == 0:
        x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
        writer.add_image('Image', x, n_iter)

        dummy_audio = torch.zeros(sample_rate * 2)
        for i in range(x.size(0)):
            # amplitude of sound should in [-1, 1]
            dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
        writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)

        writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)

        for name, param in resnet18.named_parameters():
            writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)

        # needs tensorboard 0.4RC or later
        writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)

dataset = datasets.MNIST('mnist', train=False, download=True)
images = dataset.test_data[:100].float()
label = dataset.test_labels[:100]

features = images.view(100, 784)
writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))

# export scalar data to JSON for external processing
writer.export_scalars_to_json("./all_scalars.json")
writer.close()

Screenshots

 

 

Tweaks

To add more ticks for the slider (show more image history), check https://github.com/lanpa/tensorboardX/issues/44 orhttps://github.com/tensorflow/tensorboard/pull/1138

 

你可能感兴趣的:(torch)