基于大数据技术推荐系统算法案例实战教程

基于大数据技术推荐系统算法案例实战教程
网盘下载: https://pan.baidu.com/s/1bCEJp0 密码: vrvf


互联网行业是大数据应用最前沿的阵地,目前主流的大数据技术,包括 hadoop,spark等,全部来自于一线互联网公司。


从应用角度讲,大数据在互联网领域主要有三类应用:搜索引擎(比如百度,谷歌等),广告系统(比如百度凤巢,阿里妈妈等)和推荐系统(比如阿里巴巴天猫推荐,优酷视频推荐等)。




随着电子商务规模的不断扩大,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。


为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统在提高用户体验的同时,可以大大增加用户购买量,据统计,亚马逊的 30%收入来自于他的推荐引擎。


近几年,国内互联网公司也非常重视推荐系统建设,包括阿里巴巴,京东,腾讯等。


本次培训以商业实战项目作为驱动来学习大数据技术在推荐系统项目中的应用。使得学员能够亲身体会大数据项目的使用场景和开发场景及其所产生的商业价值,零距离接触企业实战型项目,学以致用,不在停留在大数据的概念环节而是进入大数据技术实战项目开发的阶段。  




01-推荐系统与大数据的关系
101-大数据应用案例
102-大数据技术框架
103-推荐系统的技术栈
104-课程的基础要求和安排


02-认识推荐系统
201-什么是推荐系统
202-推荐系统的应用案例
203-推荐系统的评测方法
204-推荐系统的评测指标


03-推荐系统设计
301-推荐系统的设计
3

你可能感兴趣的:(基于大数据技术推荐系统算法案例实战教程)