Apache Hive (二)Hive安装
Hive的下载
下载地址http://mirrors.hust.edu.cn/apache/
选择合适的Hive版本进行下载,进到stable-2文件夹可以看到稳定的2.x的版本是2.3.3
Hive的安装
1、使用MySQL做为Hive的元数据库,所以先安装MySQL。
MySql安装过程http://www.cnblogs.com/qingyunzong/p/8294876.html
2、上传Hive安装包
3、解压安装包
[hadoop@hadoop3 ~]$ tar -zxvf apache-hive-2.3.3-bin.tar.gz -C apps/
4、修改配置文件
配置文件所在目录apache-hive-2.3.3-bin/conf
[hadoop@hadoop3 apps]$ cd apache-hive-2.3.3-bin/ [hadoop@hadoop3 apache-hive-2.3.3-bin]$ ls bin binary-package-licenses conf examples hcatalog jdbc lib LICENSE NOTICE RELEASE_NOTES.txt scripts [hadoop@hadoop3 apache-hive-2.3.3-bin]$ cd conf/ [hadoop@hadoop3 conf]$ ls beeline-log4j2.properties.template ivysettings.xml hive-default.xml.template llap-cli-log4j2.properties.template hive-env.sh.template llap-daemon-log4j2.properties.template hive-exec-log4j2.properties.template parquet-logging.properties hive-log4j2.properties.template [hadoop@hadoop3 conf]$ pwd /home/hadoop/apps/apache-hive-2.3.3-bin/conf [hadoop@hadoop3 conf]$
新建hive-site.xml并添加以下内容
[hadoop@hadoop3 conf]$ touch hive-site.xml [hadoop@hadoop3 conf]$ vi hive-site.xml
javax.jdo.option.ConnectionURL jdbc:mysql://hadoop1:3306/hivedb?createDatabaseIfNotExist=true JDBC connect string for a JDBC metastore javax.jdo.option.ConnectionDriverName com.mysql.jdbc.Driver Driver class name for a JDBC metastore javax.jdo.option.ConnectionUserName root username to use against metastore database javax.jdo.option.ConnectionPassword root password to use against metastore database
以下可选配置,该配置信息用来指定 Hive 数据仓库的数据存储在 HDFS 上的目录
hive.metastore.warehouse.dir /hive/warehouse hive default warehouse, if nessecory, change it
5、 一定要记得加入 MySQL 驱动包(mysql-connector-java-5.1.40-bin.jar)该 jar 包放置在 hive 的根路径下的 lib 目录
6、 安装完成,配置环境变量
[hadoop@hadoop3 lib]$ vi ~/.bashrc
#Hive export HIVE_HOME=/home/hadoop/apps/apache-hive-2.3.3-bin export PATH=$PATH:$HIVE_HOME/bin
使修改的配置文件立即生效
[hadoop@hadoop3 lib]$ source ~/.bashrc
7、 验证 Hive 安装
[hadoop@hadoop3 ~]$ hive --help Usage ./hive--service serviceName Service List: beeline cleardanglingscratchdir cli hbaseimport hbaseschematool help hiveburninclient hiveserver2 hplsql jar lineage llapdump llap llapstatus metastore metatool orcfiledump rcfilecat schemaTool version Parameters parsed: --auxpath : Auxiliary jars --config : Hive configuration directory --service : Starts specific service/component. cli is default Parameters used: HADOOP_HOME or HADOOP_PREFIX : Hadoop install directory HIVE_OPT : Hive options For help on a particular service: ./hive --service serviceName --help Debug help: ./hive --debug --help [hadoop@hadoop3 ~]$
8、 初始化元数据库
注意:当使用的 hive 是 2.x 之前的版本,不做初始化也是 OK 的,当 hive 第一次启动的 时候会自动进行初始化,只不过会不会生成足够多的元数据库中的表。在使用过程中会 慢慢生成。但最后进行初始化。如果使用的 2.x 版本的 Hive,那么就必须手动初始化元 数据库。使用命令:
[hadoop@hadoop3 ~]$ schematool -dbType mysql -initSchema SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/home/hadoop/apps/apache-hive-2.3.3-bin/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] Metastore connection URL: jdbc:mysql://hadoop1:3306/hivedb?createDatabaseIfNotExist=true Metastore Connection Driver : com.mysql.jdbc.Driver Metastore connection User: root Starting metastore schema initialization to 2.3.0 Initialization script hive-schema-2.3.0.mysql.sql Initialization script completed schemaTool completed [hadoop@hadoop3 ~]$
9、 启动 Hive 客户端
hive --service cli和hive效果一样
[hadoop@hadoop3 ~]$ hive --service cli SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/home/hadoop/apps/apache-hive-2.3.3-bin/lib/log4j-slf4j-impl-2.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/home/hadoop/apps/hadoop-2.7.5/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] Logging initialized using configuration in jar:file:/home/hadoop/apps/apache-hive-2.3.3-bin/lib/hive-common-2.3.3.jar!/hive-log4j2.properties Async: true Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. hive>
基本使用
现有一个文件student.txt,将其存入hive中,student.txt数据格式如下:
95002,刘晨,女,19,IS 95017,王风娟,女,18,IS 95018,王一,女,19,IS 95013,冯伟,男,21,CS 95014,王小丽,女,19,CS 95019,邢小丽,女,19,IS 95020,赵钱,男,21,IS 95003,王敏,女,22,MA 95004,张立,男,19,IS 95012,孙花,女,20,CS 95010,孔小涛,男,19,CS 95005,刘刚,男,18,MA 95006,孙庆,男,23,CS 95007,易思玲,女,19,MA 95008,李娜,女,18,CS 95021,周二,男,17,MA 95022,郑明,男,20,MA 95001,李勇,男,20,CS 95011,包小柏,男,18,MA 95009,梦圆圆,女,18,MA 95015,王君,男,18,MA
1、创建一个数据库myhive
hive> create database myhive; OK Time taken: 7.847 seconds hive>
2、使用新的数据库myhive
hive> use myhive; OK Time taken: 0.047 seconds hive>
3、查看当前正在使用的数据库
hive> select current_database(); OK myhive Time taken: 0.728 seconds, Fetched: 1 row(s) hive>
4、在数据库myhive创建一张student表
hive> create table student(id int, name string, sex string, age int, department string) row format delimited fields terminated by ","; OK Time taken: 0.718 seconds hive>
5、往表中加载数据
hive> load data local inpath "/home/hadoop/student.txt" into table student; Loading data to table myhive.student OK Time taken: 1.854 seconds hive>
6、查询数据
hive> select * from student; OK 95002 刘晨 女 19 IS 95017 王风娟 女 18 IS 95018 王一 女 19 IS 95013 冯伟 男 21 CS 95014 王小丽 女 19 CS 95019 邢小丽 女 19 IS 95020 赵钱 男 21 IS 95003 王敏 女 22 MA 95004 张立 男 19 IS 95012 孙花 女 20 CS 95010 孔小涛 男 19 CS 95005 刘刚 男 18 MA 95006 孙庆 男 23 CS 95007 易思玲 女 19 MA 95008 李娜 女 18 CS 95021 周二 男 17 MA 95022 郑明 男 20 MA 95001 李勇 男 20 CS 95011 包小柏 男 18 MA 95009 梦圆圆 女 18 MA 95015 王君 男 18 MA Time taken: 2.455 seconds, Fetched: 21 row(s) hive>
7、查看表结构
hive> desc student; OK id int name string sex string age int department string Time taken: 0.102 seconds, Fetched: 5 row(s) hive>
hive> desc extended student; OK id int name string sex string age int department string Detailed Table Information Table(tableName:student, dbName:myhive, owner:hadoop, createTime:1522750487, lastAccessTime:0, retention:0, sd:StorageDescriptor(cols:[FieldSchema(name:id, type:int, comment:null), FieldSchema(name:name, type:string, comment:null), FieldSchema(name:sex, type:string, comment:null), FieldSchema(name:age, type:int, comment:null), FieldSchema(name:department, type:string, comment:null)], location:hdfs://myha01/user/hive/warehouse/myhive.db/student, inputFormat:org.apache.hadoop.mapred.TextInputFormat, outputFormat:org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat, compressed:false, numBuckets:-1, serdeInfo:SerDeInfo(name:null, serializationLib:org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe, parameters:{serialization.format=,, field.delim=,}), bucketCols:[], sortCols:[], parameters:{}, skewedInfo:SkewedInfo(skewedColNames:[], skewedColValues:[], skewedColValueLocationMaps:{}), storedAsSubDirectories:false), partitionKeys:[], parameters:{transient_lastDdlTime=1522750695, totalSize=523, numRows=0, rawDataSize=0, numFiles=1}, viewOriginalText:null, viewExpandedText:null, tableType:MANAGED_TABLE, rewriteEnabled:false) Time taken: 0.127 seconds, Fetched: 7 row(s) hive>
hive> desc formatted student; OK # col_name data_type comment id int name string sex string age int department string # Detailed Table Information Database: myhive Owner: hadoop CreateTime: Tue Apr 03 18:14:47 CST 2018 LastAccessTime: UNKNOWN Retention: 0 Location: hdfs://myha01/user/hive/warehouse/myhive.db/student Table Type: MANAGED_TABLE Table Parameters: numFiles 1 numRows 0 rawDataSize 0 totalSize 523 transient_lastDdlTime 1522750695 # Storage Information SerDe Library: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe InputFormat: org.apache.hadoop.mapred.TextInputFormat OutputFormat: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat Compressed: No Num Buckets: -1 Bucket Columns: [] Sort Columns: [] Storage Desc Params: field.delim , serialization.format , Time taken: 0.13 seconds, Fetched: 34 row(s) hive>
posted @
2018-06-08 10:55 青衫仗剑 阅读(
...) 评论(
...) 编辑 收藏